首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years, there has been an increased interest in injectable, in situ crosslinking hydrogels due to their minimally invasive application and ability to conform to their environment. Current in situ crosslinking chitosan hydrogels are either mechanically robust with poor biocompatibility and limited biodegradation due to toxic crosslinking agents or the hydrogels are mechanically weak and undergo biodegradation too rapidly due to insufficient crosslinking. Herein, the authors developed and characterized a thermally-driven, injectable chitosan-genipin hydrogel capable of in situ crosslinking at 37 °C that is mechanically robust, biodegradable, and maintain high biocompatibility. The natural crosslinker genipin is utilized as a thermally-driven, non-toxic crosslinking agent. The chitosan-genipin hydrogel's crosslinking kinetics, injectability, viscoelasticity, swelling and pH response, and biocompatibility against human keratinocyte cells are characterized. The developed chitosan-genipin hydrogels are successfully crosslinked at 37 °C, demonstrating temperature sensitivity. The hydrogels maintained a high percentage of swelling over several weeks before degrading in biologically relevant environments, demonstrating mechanical stability while remaining biodegradable. Long-term cell viability studies demonstrated that chitosan-genipin hydrogels have excellent biocompatibility over 7 days, including during the hydrogel crosslinking phase. Overall, these findings support the development of an injectable, in situ crosslinking chitosan-genipin hydrogel for minimally invasive biomedical applications.  相似文献   

2.
Hydrogels that can form spontaneously via covalent bond formation upon injection in vivo have recently attracted significant attention for their potential to address a variety of biomedical challenges. This review discusses the design rules for the effective engineering of such materials, and the major chemistries used to form injectable, in situ gelling hydrogels in the context of these design guidelines are outlined (with examples). Directions for future research in the area are addressed, noting the outstanding challenges associated with the use of this class of hydrogels in vivo.

  相似文献   


3.
Horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)‐mediated crosslinking reaction has become an attractive method to create in situ forming hydrogels. While the crosslinking system has been widely utilized, there are certain issues require improvement to extend their biomedical applications, including creation of stiff hydrogels without compromising cytocompatibility due to initially high concentrations of H2O2. A gelatin‐based hydrogels formed through a dual enzyme‐mediated crosslinking reaction using HRP and glucose oxidase (GOx) as an H2O2‐generating enzyme to gradually supply a radical source in HRP‐mediated crosslinking reaction is reported. The physicochemical properties can be controlled by varying enzyme concentrations. Furthermore the hydrogel matrices provide 3D microenvironments for supporting the growth and spreading of human dermal fibroblasts with minimized cytotoxicity, despite the cells being encapsulated within stiff hydrogels. These hydrogels formed with HRP/GOx have great potential as artificial microenvironments for a wide range of biomedical applications.

  相似文献   


4.
In light of the limited efficacy of current treatments for cardiac regeneration, tissue engineering approaches have been explored for their potential to provide mechanical support to injured cardiac tissues, deliver cardio‐protective molecules, and improve cell‐based therapeutic techniques. Injectable hydrogels are a particularly appealing system as they hold promise as a minimally invasive therapeutic approach. Moreover, injectable acellular alginate‐based hydrogels have been tested clinically in patients with myocardial infarction (MI) and show preservation of the left ventricular (LV) indices and left ventricular ejection fraction (LVEF). This review provides an overview of recent developments that have occurred in the design and engineering of various injectable hydrogel systems for cardiac tissue engineering efforts, including a comparison of natural versus synthetic systems with emphasis on the ideal characteristics for biomimetic cardiac materials.  相似文献   

5.
Metastasis is a pathogenic spread of cancer cells from the primary site to surrounding tissues and distant organs, making it one of the primary challenges for effective cancer treatment and the major cause of cancer mortality. Heparin‐based biomaterials exhibit significant inhibition of cancer cell metastasis. In this study, a non‐anticoagulate heparin prodrug is developed for metastasis treatment with a localized treatment system using temperature sensitive, injectable, and biodegradable (poly‐(ε‐caprolactone‐co‐lactide)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone‐co‐lactide) polymeric hydrogel. The drug molecule (heparin) is conjugated with the polymer via esterification, and its sustained release is ensured by hydrolysis and polymeric biodegradation. An aqueous solution of the polymer could be used as an injectable solution at below 25 °C and it achieves gel formation at 37 °C. The anti‐metastasis effect of the hydrogels is investigated both in vitro and in vivo. The results demonstrated that local administration of injectable heparin‐loaded hydrogels effectively promote an inhibitory effect on cancer metastasis.  相似文献   

6.
Injectable biodegradable copolymer hydrogels, which exhibit a sol–gel phase transition in response to external stimuli, such as temperature changes or both pH and temperature (pH/temperature) alterations, have found a number of uses in biomedical and pharmaceutical applications, such as drug delivery, cell growth, and tissue engineering. These hydrogels can be used in simple pharmaceutical formulations that can be prepared by mixing the hydrogel with drugs, proteins, or cells. Such formulations are administered in a straightforward manner, through site‐specific control of release behavior, and the hydrogels are compatible with biological systems. This review will provide a summary of recent progress in biodegradable temperature‐sensitive polymers including polyesters, polyphosphazenes, polypeptides, and chitosan, and pH/temperature‐sensitive polymers such as sulfamethazine‐, poly(β‐amino ester)‐, poly(amino urethane)‐, and poly(amidoamine)‐based polymers. The advantages of pH/temperature‐sensitive polymers over simple temperature‐sensitive polymers are also discussed. A perspective on the future of injectable biodegradable hydrogels is offered.

  相似文献   


7.
可注射水凝胶的制备与应用   总被引:4,自引:0,他引:4  
可注射水凝胶在再生医学和药物控释等方面有着广泛的用途,是近年来生物医用材料领域新的研究方向.本文综述了近年来人们在可注射水凝胶制备和应用方面的研究进展,最后展望了其发展前景.  相似文献   

8.
Hypoxia plays a critical role in the development and wound healing process, as well as a number of pathological conditions. Here, dextran‐based hypoxia‐inducible (Dex‐HI) hydrogels formed with in situ oxygen consumption via a laccase−medicated reaction are reported. Oxygen levels and gradients were accurately predicted by mathematical simulation. It is demonstrated that Dex‐HI hydrogels provide prolonged hypoxic conditions up to 12 h. The Dex‐HI hydrogel offers an innovative approach to delineate not only the mechanism by which hypoxia regulates cellular responses, but may facilitate the discovery of new pathways involved in the generation of hypoxic and oxygen gradient environments.

  相似文献   


9.
Hydrogels are promising for a variety of medical applications due to their high water content and mechanical similarity to natural tissues. When made injectable, hydrogels can reduce the invasiveness of application, which in turn reduces surgical and recovery costs. Key schemes used to make hydrogels injectable include in situ formation due to physical and/or chemical cross‐linking. Advances in polymer science have provided new injectable hydrogels for applications in drug delivery and tissue engineering. A number of these injectable hydrogel systems have reached the clinic and impact the health care of many patients. However, a significant remaining challenge is translating the ever‐growing family of injectable hydrogels developed in laboratories around the world to the clinic. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

10.
Biocompatible and antibacterial hydrogels have received increasing attention for preventing local bacterial infections. In this study, a type of polysaccharide hydrogels is prepared via the Schiff‐based reaction at physiological conditions. The gelation time and mechanical property of the hydrogels are found to be dependent on the polysaccharide concentration and the polysaccharide weight ratio. 3‐(4,5‐Dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay and live/dead assay indicate that the hydrogels display nontoxicity in vitro. After subcutaneous injection into rats, the hydrogels exhibit an acceptable biocompatibility in vivo. Furthermore, the bacterial inhibition tests by shaking flask method and agar disc‐diffusion method demonstrate that the ceftriaxone‐sodium‐loaded hydrogels have remarkable antibacterial properties in vitro. The in vivo anti‐infective tests further display that the antibiotic‐loaded hydrogels display excellent anti‐infective efficacies in both superficial and deep tissue infection. Consequently, the injectable and biocompatible polysaccharide hydrogels may serve as promising platforms for localized, sustained delivery of antibiotics for preventing local infections.

  相似文献   


11.
Abstract

A high number of sport injuries result in damage to articular cartilage, a tissue type with poor self-healing capacity. Articular cartilage tissue is a sophisticated hydrogel, which contains 80% water and possesses strong mechanical properties. For this reason, synthetic hydrogels are thought to be an optimal material for cartilage regeneration. In the last decade, more than 2,000 research papers pertaining to “hydrogel and cartilage” have been published. Due to its biomimetic properties and user-friendly nature, especially in the field of minimal invasive surgery, intelligent injectable hydrogel have gradually become a focal point in cartilage research in recent years. In this review, we systematically summarize current “state-of-the-art” manufacture technologies of injectable hydrogels including ion-induced, thermo-induced, non-induced chemical, and light-induced crosslinking. We also review current strategies for designing intelligent injectable hydrogels, such as component-based, mechanical property-based and structure-based intelligent design to simulate the natural articular cartilage. Lastly, the applications of intelligent injectable hydrogels for cartilage regeneration are presented, and their outlooks for future clinical translation is dicussed.  相似文献   

12.
Hydrogels and nanofibers have been firmly established as go-to materials for various biomedical applications. They have been mostly utilized separately, rarely together, because of their distinctive attributes and shortcomings. However, the potential benefits of integrating nanofibers with hydrogels to synergistically combine their functionalities while attenuating their drawbacks are increasingly recognized. Compared to other nanocomposite materials, incorporating nanofibers into hydrogel has the distinct advantage of emulating the hierarchical structure of natural extracellular environment needed for cell and tissue culture. The most important technological aspect of developing “nanofiber-composite hydrogel” is generating nanofibers made of various polymers that are cross-linked and short enough to maintain stable dispersion in hydrated environment. In this review, recent research efforts to develop nanofiber-composite hydrogels are presented, with added emphasis on nanofiber processing techniques. Several notable examples of implementing nanofiber-composite hydrogels for biomedical applications are also introduced.  相似文献   

13.
Injectable hydrogels have been commonly used as drug‐delivery vehicles and tried in tissue engineering. Injectable self‐healing hydrogels have great advantage over traditional injectable hydrogels because they can be injected as a liquid and then rapidly form bulk gels in situ at the target site under physiological conditions. This study develops an injectable thermosensitive self‐healing hydrogel based on chain‐extended F127 (PEO90‐PPO65‐PEO90) multi‐block copolymer (m‐F127). The rapid sol–gel transition ability under body temperature allows it to be used as injectable hydrogel and the self‐healing property allows it to withstand repeated deformation and quickly recover its mechanical properties and structure through the dynamic covalent bonds. It is hoped that the novel strategy and the fascinating properties of the hydrogel as presented here will provide new opportunities with regard to the design and practical application of injectable self‐healing hydrogels.

  相似文献   


14.
15.
16.
Polymer hydrogels that are capable of spontaneously healing injury are being developed at a rapid pace because of their great potential in biomedical applications. Here, the self‐healing property of tough graphene nanocomposite hydrogels fabricated by using graphene peroxide as polyfunctional initiating and cross‐linking centers is reported. The hydrogels show excellent self‐healing ability at ambient temperature or even lower temperatures for a short time and very high recovery degrees (up to 88% tensile strength) can be achieved at a prolonged healing time. The healed gels exhibit very high tensile strengths (up to 0.35 MPa) and extremely high elongations (up to 4900%). The strong interactions between the polyacrylamide chains and the graphene oxide sheets are essential to the mechanical strengths of the healed gels.

  相似文献   


17.
Peptides and polymers are the “elite” building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self‐assembly into hybrid hydrogels, as either peptide‐polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.  相似文献   

18.
医用高分子水凝胶的设计与合成   总被引:5,自引:0,他引:5  
作为一类重要的医用功能材料,高分子水凝胶可望在药物控释、软骨支架构建、活性细胞封装等方面获得广泛应用。综述了基于化学交联和物理交联的有关水凝胶的设计与合成方法,重点介绍了通过自由基共聚反应、结构互补基团间化学反应形成的化学交联水凝胶以及通过荷电相反离子问相互作用、两亲性嵌段或接枝共聚物疏水缔合、结晶与氢键相互作用形成的物理交联水凝胶。  相似文献   

19.
Summary: An in‐situ mineralization process in the presence of thermo‐responsive microgels leads to the formation of well‐defined hybrid materials. Experimental data suggest that control of the mineralization process in the presence of the microgels offers the possibility to obtain sub‐micrometer‐sized hybrid particles or macroscopic hybrid hydrogels. The rapid formation of CaCO3 crystals in the microgel structure favors the preparation of the hybrid particles wherein inorganic crystals cover the shell layer of the microgel. The slow formation of CaCO3 crystals leads to the simultaneous self‐assembly of the microgel particles on the bottom of the reaction vessel, and the formation of a physical network. It has been demonstrated that hybrid hydrogel materials with different calcium carbonate contents and temperature‐dependent swelling‐deswelling properties can be prepared.

Formation of a hybrid hydrogel by the vapor diffusion method.  相似文献   


20.
Spherical polymer brushes, poly(acrylic acid) (PAA)‐grafted polystyrene nanoparticle (PAA@PS), are employed as the macro‐crosslinker to prepare PAA hydrogels. Benefitting from the innumerable hydrogen bonds between highly entangled PAA chains both in bulk and on the polymer brush, the PAA/PAA@PS hydrogels combine desirable stretchability, toughness, and notch‐insensitivity. The uniaxial tensile tests show a very high fracture elongation up to 9.1 × 103% while the fracture toughness reaches 3.0 MJ m−3 and the maximum swelling ratio of the hydrogel can be 2.0 × 103 as well. After being loaded with silver nanoparticles, the PAA/PAA@PS hydrogels are employed as a recyclable catalyst successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号