首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We investigated the structures and bonding of two series of early transition-metal oxide clusters, M(2)O(n)(-) and M(2)O(n) (M = Nb, Ta; n = 5-7) using photoelectron spectroscopy (PES) and density-functional theory (DFT). The stoichiometric M(2)O(5) clusters are found to be closed shell with large HOMO-LUMO gaps, and their electron affinities (EAs) are measured to be 3.33 and 3.71 eV for M = Nb and Ta, respectively; whereas EAs for the oxygen-rich clusters are found to be much higher: 5.35, 5.25, 5.28, and 5.15 eV for Nb(2)O(6), Nb(2)O(7), Ta(2)O(6), and Ta(2)O(7), respectively. Structural searches at the B3LYP level yield triplet and doublet ground states for the oxygen-rich neutral and anionic clusters, respectively. Spin density analyses reveal oxygen radical, diradical, and superoxide characters in the oxygen-rich clusters. The M(2)O(7)(-) and M(2)O(7) clusters, which can be viewed to be formed by M(2)O(5)(-/0) + O(2), are utilized as molecular models to understand dioxygen activation on M(2)O(5)(-) and M(2)O(5) clusters. The O(2) adsorption energies on the stoichiometric M(2)O(5) neutrals are shown to be surprisingly high (1.3-1.9 eV), suggesting strong capabilities to activate O(2) by structural defects in Nb and Ta oxides. The PES data also provides valuable benchmarks for various density functionals (B3LYP, BP86, and PW91) for the Nb and Ta oxides.  相似文献   

3.
Vanadium oxide clusters, (V2O5)n, have been predicted to possess interesting polyhedral cage structures, which may serve as ideal molecular models for oxide surfaces and catalysts. Here we examine the electronic properties of these oxide clusters via anion photoelectron spectroscopy for (V2O5)n(-) (n = 2-4), as well as for the 4d/5d species, Nb4O10(-) and Ta4O10(-). Well-resolved photoelectron spectra have been obtained at 193 and 157 nm and used to compare with density functional calculations. Very high electron affinities and large HOMO-LUMO gaps are observed for all the (V2O5)n clusters. The HOMO-LUMO gaps of (V2O5)n, all exceeding that of the band gap of the bulk oxide, are found to increase with cluster size from n = 2-4. For the M4O10 clusters, we find that the Nb/Ta species yield similar spectra, both possessing lower electron affinities and larger HOMO-LUMO gaps relative to V4O10. The structures of the anionic and neutral clusters are optimized; the calculated electron binding energies and excitation spectra for the global minimum cage structures are in good agreement with the experiment. Evidence is also observed for the predicted trend of electron delocalization versus localization in the (V2O5)n(-) clusters. Further insights are provided pertaining to the potential chemical reactivities of the oxide clusters and properties of the bulk oxides.  相似文献   

4.
Catalysts with heteronuclear metal active sites may have high performance in the nitrogen reduction reaction (NRR), and the in-depth understanding of the reaction mechanisms is crucial for the design of related catalysts. In this work, the dissociative adsorption of N2 on heteronuclear trimetallic MFe2 and M2Fe (M=V, Nb, and Ta) clusters was studied with density functional theory calculations. For each cluster, two reaction paths were studied with N2 initially on M and Fe atoms, respectively. Mayer bond order analysis provides more information on the activation of N−N bonds. M2Fe is generally more reactive than MFe2. The coordination mode of N2 on three metal atoms can be end-on: end-on: side-on (EES) for both MFe2 and M2Fe. In addition, a unique end-on: side-on: side-on (ESS) coordination mode was found for M2Fe, which leads to a higher degree of N−N bond activation. Nb2Fe has the highest reactivity towards N2 when both the transfer of N2 and the dissociation of N−N bonds are taken into account, while Ta-containing clusters have a superior ability to activate the N−N bond. These results indicate that it is possible to improve the performance of iron-based catalysts by doping with vanadium group metals.  相似文献   

5.
Electronic Structure of TiAl-2M(M=V,Nb,Ta,Cr,Mo,W,Mn) Alloy   总被引:1,自引:0,他引:1  
1INTRODUCTIONTitaniumaluminidesbasedonY-TiAlarereceivingconsiderableattentionaspo-tentialcandidatesformaterialsinhightemperatureaerospaceapplication.Theirlowdensity,hightemperaturescreepresistance,highoxidationresistanceandstrengthmakesthemexcellentpotentialenginematerials.Howevertheirlowductilityandlowfracturetoughnessatroom'temperaturesaremajorhindrancestotheirpracticaluti-lization.TheTiAlalloymayhaveanelongationabout2%t'},furtherimprovementisnecessarybeforethesematerialscouldbeusedin…  相似文献   

6.
Synthesis, Structure, and Properties of the Tetraarsenidometallates(V) M7[TAs4] (M = K, Rb; T = Nb, Ta) The tetraarsenidometallates(V) M7[TAs4] (M = K, Rb; T = Nb, Ta) have been prepared from RbAs, KAs, Rb3As, K3As, and Nb or Ta in sealed Nb(Ta) ampoules at T = 1100 K. They crystallize in a new structure type oP24 (Pmn21, no. 31); K7[NbAs4]: a = 1019.2(2) pm, b = 916.2(2) pm, c = 830.6(1) pm; K7[TaAs4]: a = 1017.3(2) pm, b = 915.5(2) pm, c = 830.5(2) pm; Rb7[NbAs4]: a = 1059.2(4) pm, b = 952.8(4) pm, c = 860.4(4) pm; Z = 2 formula units per unit cell). The compounds form dark red crystals and they are sensitive against air and moisture. They are semiconductors with Eg = 1.80 eV. The thermal decomposition in dynamical vacuum gives evidence for the existance of K4TAs3 and K2TAs2 (T = Nb, Ta). Main structural units are polar oriented tetrahedra [TAs4] with d (T – As) = 252.2(1) pm; 251.3(1) pm; 253.0(4) pm, respectively. The As atoms are trigonal prismatically coordinated by M and T atoms. These trigonal prisms form anionic and cationic layers [M4As2]2? and 2[M3TAs2]2+ alternating along the b axis. The structure is comparable with that of Co2P and can be described as a stuffed shear variant of the Na6□ZnO4 type of structure.  相似文献   

7.
The electronic and optical properties of InMO(4) (M = V, Nb, Ta) photocatalysts are studied using first-principles calculations. For all InMO(4), the calculated band gaps are larger than the measured optical gaps, indicating the existence of sub-bandgap transitions. Impurity states and excitons are considered to interpret the characteristic absorption onsets in the measured UV-visible diffuse reflection spectra. The novel visible-light-active water-splitting photocatalytic properties of InMO(4) are related to the sub-bandgap transitions. Correlation between the impurity states and the photocatalytic activities is discussed for InMO(4)via the conventional mechanism of photocatalytic water-splitting on semiconductors. An excitonic mechanism analogous to Photosystem II in plant photosynthesis is also proposed for the photocatalytic water-splitting process on InMO(4).  相似文献   

8.
采用密度泛函理论研究了过渡金属钒族氧化物阳离子团簇(M2O5)+m=1,2(M=V, Nb, Ta)与C2H4气相反应机理. 反应为(M2O5)m++C2H4→(M2O5)m-1M2O4++C2H4O, 反应物先化合生成C—O键相连的化合物, 经过过渡态后M—O键断裂, 从而发生氧原子转移到碳氢化合物上的反应. 对于V2O5+与C2H4的反应, 存在经顺式和反式两种过渡态结构路径, 从能量上看, 经反式过渡态结构的路径更有利. 计算结果表明, 发生反应时C2H4与钒氧化物阳离子反应大量放热, 而与铌、钽氧化物阳离子反应却放热较少甚至不放热, 这与实验结果一致. 钒、铌、钽氧化物阳离子团簇发生氧转移反应活性不同的原因是金属-氧键的强弱不同所致.  相似文献   

9.
用紧束缚能带计算方法(EHT)研究了标题多元合金的能带及电子结构。发现少量的多种元素在γ-TiAl中掺杂,对合金中电荷分布的影响,具有单种元素掺杂的叠加性;选择适当的合金元素就能达到多种掺杂的性能互补。多种元素掺杂能更有效地使成键电子云趋势于球形化,Peierls力均称为化,有利于增加γ-TiAl合金的塑性和变形性。  相似文献   

10.
The structural and electronic effects of isoelectronic substitution by Ag and Cu atoms on gold cluster anions in the size range between 13 and 15 atoms are studied using a combination of photoelectron spectroscopy and first-principles density functional calculations. The most stable structures of the doped clusters are compared with those of the undoped Au clusters in the same size range. The joint experimental and theoretical study reveals a new C(3v) symmetric isomer for Au(13)(-), which is present in the experiment, but has hitherto not been recognized. The global minima of Au(14)(-) and Au(15)(-) are resolved on the basis of comparison between experiment and newly computed photoelectron spectra that include spin-orbit effects. The coexistence of two isomers for Au(15)(-) is firmly established with convincing experimental evidence and theoretical calculations. The overall effect of the isoelectronic substitution is minor on the structures relative to those of the undoped clusters, except that the dopant atoms tend to lower the symmetries of the doped clusters.  相似文献   

11.
Several new donor–acceptor adducts of niobium and tantalum pentaazide with N‐donor ligands have been prepared from the pentafluorides by fluoride–azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2′‐bipyridine and 1,10‐phenanthroline, the self‐ionization products [MF4(2,2′‐bipy)2]+[M(N3)6], [M(N3)4(2,2′‐bipy)2]+[M(N3)6] and [M(N3)4(1,10‐phen)2]+[M(N3)6] were obtained. With the donor ligands 3,3′‐bipyridine and 4,4′‐bipyridine the neutral pentaazide adducts (M(N3)5)2⋅L (M=Nb, Ta; L=3,3′‐bipy, 4,4′‐bipy) were formed.  相似文献   

12.
Several new donor–acceptor adducts of niobium and tantalum pentaazide with N‐donor ligands have been prepared from the pentafluorides by fluoride–azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2′‐bipyridine and 1,10‐phenanthroline, the self‐ionization products [MF4(2,2′‐bipy)2]+[M(N3)6]?, [M(N3)4(2,2′‐bipy)2]+[M(N3)6]? and [M(N3)4(1,10‐phen)2]+[M(N3)6]? were obtained. With the donor ligands 3,3′‐bipyridine and 4,4′‐bipyridine the neutral pentaazide adducts (M(N3)5)2?L (M=Nb, Ta; L=3,3′‐bipy, 4,4′‐bipy) were formed.  相似文献   

13.
We report the results of density functional theory calculations on cluster-assembled materials based on M(12)N(12) (M = Al, Ga) fullerene-like clusters. Our results show that the M(12)N(12) fullerene-like structure with six isolated four-membered rings (4NRs) and eight six-membered rings (6NRs) has a T(h) symmetry and a large HOMO-LUMO gap, indicating that the M(12)N(12) cluster would be ideal building blocks for the synthesis of cluster-assembled materials. Via the coalescence of M(12)N(12) building blocks, we find that the M(12)N(12) clusters can bind into stable assemblies by either 6NR or 4NR face coalescence, which enables the construction of rhombohedral or cubic nanoporous framework of varying porosity. The rhombohedral-MN phase is energetically more favorable than the cubic-MN phase. The M(12)N(12) fullerene-like structures in both phases are maintained and the M-N bond lengths between M(12)N(12) monomers are slightly larger than that in isolated M(12)N(12) clusters and the bulk wurtzite phases. The band analysis of both phases reveals that they are all wide-gap semiconductors. Because of the nanoporous character of these phases, they could be used for gas storage, heterogeneous catalysis, filtration and so on.  相似文献   

14.
Three new series of mixed-ligand clusters of the [(M6X12)X2(RCN)4] (M=Nb, Ta; X=Cl, Br; R=Et, n-Pr, n-Bu) composition have been prepared. It is supposed that four nitrile molecules and two halogen atoms are coordinated to the terminal octahedral coordination sites of the [M6X12]2+ unit.  相似文献   

15.
Relativistic quantum chemistry investigations are carried out to tackle the puzzling oxidation state problem in a series of MO_3~- trioxide anions of all d- and f-block elements with five valence electrons. We have shown here that while the oxidation states of V, Nb, Ta, Db, Pa are, as usual, all +V with divalent oxygen O(-II) in MO_3~- anions, the lanthanide elements Pr and Gd cannot adopt such high +V oxidation state in similar trioxide anions. Instead, lanthanide element Gd retains its usual +III oxidation state, while Pr retains a +IV oxidation state, thus forcing oxygen into a non-innocent ligand with an uncommon monovalent radical(O~·) of oxidation state -I. A unique Pr·- ·(O)_3 biradical with highly delocalized unpairing electron density on Pr(IV) and three O atoms is found to be responsible for stabilizing the monovalent-oxygen species in PrO_3~- ion, while GdO_3~- ion is in fact an OGd~+(O_2~(2-)) complex with Gd(III). These results show that a na?ve assignment of oxidation state of a chemical element without electronic structure analysis can lead to erroneous conclusions.  相似文献   

16.
The density functional method with relativistic effective core potential has been employed to investigate systematically the geometrical structures, relative stabilities, growth-pattern behaviors, and electronic properties of small bimetallic M(2)Au(n) (M = Ag, Cu; n = 1-10) and pure gold Au(n) (n ≤ 12) clusters. The optimized geometries reveal that M(2) substituted Au(n+2) clusters and one Au atom capped M(2)Au(n-1) structures are dominant growth patterns of the stable alloyed M(2)Au(n) clusters. The calculated averaged atomic binding energies, fragmentation energies, and the second-order difference of energies as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The analytic results exhibit that the planar structure Ag(2)Au(4) and Cu(2)Au(2) isomers are the most stable geometries of Ag(2)Au(n) and Cu(2)Au(n) clusters, respectively. In addition, the HOMO-LUMO gaps, charge transfers, chemical hardnesses and polarizabilities have been analyzed and compared further.  相似文献   

17.
Density functional theory (DFT) calculations have been used to investigate the d(3)d(3) bioctahedral complexes, MM'Cl(9)(5-), of the vanadium triad. Broken-symmetry calculations upon these species indicate that the V-containing complexes have optimized metal-metal separations of 3.4-3.5 A, corresponding to essentially localized magnetic electrons. The metal-metal separations in these weakly coupled dimers are elongated as a consequence of Coulombic repulsion, which profoundly influences (and destabilizes) the gas-phase structures for such dimers; nevertheless, the intermetallic interactions in the V-containing dimers involve significantly greater metal-metal bonding character than in the analogous Cr-containing dimers. These observations all show good agreement with existing experimental (solid state) results for the chloride-bridged, face-shared dimers V(2)Cl(9)(5-) and V(2)Cl(3)(thf)(6)(+). In contrast to the V-containing dimers, complexes featuring only Nb and Ta have much shorter intermetallic distances (approximately 2.4 A) consistent with d-electron delocalization and formal metal-metal triple bond formation; again, good agreement is found with available experimental data. Calculations on the complexes V(2)(mu-Cl)(3)(dme)(6)(+), Nb(2)(mu-dms)(3)Cl(6)(2-), and Ta(2)(mu-dms)(3)Cl(6)(2-), which are closely related to compounds for which crystallographic structural data exist, have been pursued and provide an insight into the intermetallic interactions in the experimentally characterized complexes. Analysis of the contributions from d-orbital overlap (E(ovlp)) stabilization, as well as spin polarization (exchange) stabilization of localized d electrons (E(spe)), has also been attempted for the MM'Cl(9)(5-) dimers. While E(ovlp) clearly dominates over E(spe) as a stabilizing factor in those dimers containing only Nb and Ta metal atoms, detailed assessment of the competition between E(ovlp) and E(spe) for V-containing dimers is obstructed by the instability of triply bonded V-containing dimers against Coulombic explosion. On the basis of the periodic trends in E(ovlp) versus E(spe), the V-triad dimers have a greater propensity for metal-metal bonding than do their Cr-triad or Mn-triad counterparts.  相似文献   

18.
Two new quaternary polyselenides, Ba4TMSbSe12 (TM = Nb, Ta), are synthesized using a solid state reaction. They crystallize in a new structural type with a P‐1 triclinic space group, characterized according to single‐crystal X‐ray diffraction. The structure is alternately stacked using isolated NbSe95? and SbSe33?, which are separated by Ba2+. The structure contains the NbSe95? unit with a bipentagonal pyramidal shape coordinated with Se2? and Se22? in monodenteate and bidentate modes. The vibrational property of the diselenide Se22? unit was studied using Raman spectrum analysis. ultraviolet–visible diffused reflectance and temperature‐dependent resistivity measurements indicate semiconductor behaviors. Calculations of electronic structures indicate the presence of a band gap and strong Se‐Se interactions in the diselenide group, which experimentally supports the measured physical properties.  相似文献   

19.
Olefin complexes (silox)(3)M(ole) (silox = (t)Bu(3)SiO; M = Nb (1-ole), Ta (2-ole); ole = C(2)H(4), C(2)H(3)Me, C(2)H(3)Et, C(2)H(3)C(6)H(4)-p-X (X = OMe, H, CF(3)), C(2)H(3)(t)Bu, (c)C(5)H(8), (c)C(6)H(10), (c)C(7)H(10) (norbornene)) rearrange to alkylidene isomers (silox)(3)M(alk) (M = Nb (1=alk), Ta (2=alk); alk = CHMe, CHEt, CH(n)Pr, CHCH(2)C(6)H(4)-p-X (X = OMe, H, CF(3) (Ta only)), CHCH(2)(t)Bu, (c)C(5)H(8), (c)C(6)H(10), (c)C(7)H(10) (norbornylidene)). Kinetics and labeling experiments suggest that the rearrangement proceeds via a delta-abstraction on a silox CH bond by the beta-olefin carbon to give (silox)(2)RM(kappa(2)-O,C-OSi(t)Bu(2)CMe(2)CH(2)) (M = Nb (4-R), Ta (6-R); R = Me, Et, (n)Pr, (n)Bu, CH(2)CH(2)C(6)H(4)-p-X (X = OMe, H, CF(3) (Ta only)), CH(2)CH(2)(t)Bu, (c)C(5)H(9), (c)C(6)H(11), (c)C(7)H(11) (norbornyl)). A subsequent alpha-abstraction by the cylometalated "arm" of the intermediate on an alpha-CH bond of R generates the alkylidene 1=alk or 2=alk. Equilibrations of 1-ole with ole' to give 1-ole' and ole, and relevant calculations on 1-ole and 2-ole, permit interpretation of all relative ground and transition state energies for the complexes of either metal.  相似文献   

20.
The electronic structures of binary M21S8 (M = Nb, Zr) and isostructural ternary (M,M')21S8 (M, M' = Hf, Ti; Nb, Ta) phases have been studied by means of extended Hückel tight-binding band structure calculations. For the valence electron concentration in the binary group 5 metal phase Nb21S8, metal-metal bonding is optimized whereas, in the isostructural group 4 metal phase Zr21S8, metal-metal bonding levels exist above the Fermi level. However, the electronic structure analysis suggests a stable structure for M21S8 phases with group 4 metals and that (M,M')21S8 phases with mixed group 4 and group 5 metals, even if not yet reported, could well exist. In the ternary phase Nb6.9Ta14.1S8, a linear relationship exists between the magnitude of the metal-metal bonding capacity (as expressed by the total metal-metal Mulliken overlap population) of each crystallographically independent metal site and the occupation of the site with the heavier metal (i.e., the element with the greater bonding capability). The situation is quite more complex in Hf7.5Ti13.5S8, where the metal-metal bonding capacity of each site, differences in electronegativity between Ti and Hf, and site volume arguments must be taken into account to understand the metal site occupation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号