首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties and reactivities of the xanthone (Xn) ketyl radical (XnH*) in the doublet excited state (XnH*(D1)) were examined by using two-color two-laser flash photolysis. The absorption and fluorescence of XnH*(D1) were observed for the first time. Several factors governing the deactivation processes of XnH*(D1) such as interaction and reaction with solvent molecules were discussed. The remarkable change of reactivity of XnH*(D1) compared with that in the ground state (XnH*(D0)) was indicated from the experimental results. The rapid halogen abstraction of XnH*(D1) from some halogen donors such as carbon tetrachloride (CCl4) was found to occur. The halogen abstraction occurred more efficiently in the polar solvents than in the nonpolar solvents. It is suggested that the polar solvents promote the spin distribution of XnH*(D1) of the phenyl ring favorable to the halogen abstraction.  相似文献   

2.
Effects of solvent water on the photophysical properties of a series of meta- and para-substituted anilines have been investigated by means of time-resolved fluorescence, transient absorption, and photoacoustic measurements. Some aniline derivatives exhibit extremely short fluorescence lifetime (tau(f)) and small quantum yield (Phi(f)) in water (e.g., tau(f) = 45 ps and Phi(f) = 0.0019 for m-cyanoaniline (m-ANCN) in H(2)O), which is in marked contrast with their much larger values in nonaqueous solvents (tau(f) = 7.3 ns and Phi(f) = 0.14 for m-ANCN in acetonitrile). Photoacoustic and transient absorption measurements show that the remarkable fluorescence quenching of m-ANCN in water is attributed almost exclusively to fast internal conversion. The lifetime measurements of m-ANCN in H(2)O/acetonitrile binary solvent mixtures reveal that the quenching is related to variation of hydrogen-bonding interactions between the amino group and water molecules and the conformational change of the amino group upon electronic excitation. Similar fluorescence quenching due to solvent water is also found for N-alkylated m-ANCNs. The drastic differences in the fluorescence intensity and lifetime of m-ANCNs under hydrophobic and hydrophilic environments and also the large solvent polarity dependence of the fluorescence band position suggest the possibility that they can be utilized as fluorescent probes for investigating the microenvironment of biological systems. In suspensions of human serum albumin (HSA) in water, remarkable enhancement of the fluorescence intensity and lifetime is observed for m-ANCN and its N-alkylated derivatives, demonstrating that m-ANCNs can be a candidate for novel fluorescent probe with small molecular size.  相似文献   

3.
Electronic absorption, excitation and fluorescence spectra of fluorenone and 4-hydroxyfluorenone were recorded at room temperature in several aprotic solvent of varying polarities. The ground (mu(g)) and excited (mu(e)) state dipole moments of both molecules were estimated from solvatochromic shifts of absorption and fluorescence spectra as a function of the dielectric constant (epsilon) and refractive index (n). These experimental results were completed with theoretical results of quantum chemical calculations (AM1). The experimental and theoretical dipole moments in the ground state were compared. It was determined that dipole moments of excited state were higher than those of the ground state for both molecules.  相似文献   

4.
Spectroscopic and excited-state properties of tri-9-anthrylborane (TAB), showing unique absorption and fluorescence characteristics originating from p(boron)-pi(anthryl group) orbital interactions, were studied in 12 solvents. Although the absorption maximum energy (nu(a)) of TAB which appeared at around 21 x 10(3) cm(-1) (band I) was almost independent of the solvent polarity parameter, f(X) (f(X) = (D(s) - 1)/(2D(s) + 1) - (n(2) - 1)/(2n(2) + 1) where D(s) and n represent the static dielectric constant and the refractive index of a solvent, respectively), the fluorescence maximum energy (nu(f)) showed a linear correlation with f(X). The f(X) dependence of the value of nu(a) - nu(f) demonstrated that the change in the dipole moment of TAB upon light excitation was approximately 8.0 D, indicating that absorption band I was ascribed to an intramolecular charge-transfer transition in nature. The excited electron of TAB was thus concluded to localize primarily on the p orbital of the boron atom. Furthermore, it was shown that the fluorescence lifetime and quantum yield of TAB varied from 11.8 to 1.1 ns and from 0.41 to 0.02, respectively, with an increase in f(X). The present results indicated that the nonradiative decay rate constant (k(nr)) of TAB was influenced significantly by f(X). Excited-state decay of TAB was understood by intramolecular back-electron (charge) transfer from the p orbital of the boron atom to the pi orbital of the anthryl group, which was discussed in terms of the energy gap dependence of k(nr). Specific solvent interactions of TAB revealed by the present spectroscopic and photophysical studies are also discussed.  相似文献   

5.
The photophysical properties of 3-[2-(4-diphenylaminophenyl)benzoxazol-5-yl]alanine methyl ester (1b) and its Boc derivative (1a) were studied in a series of solvents. Its UV-Vis absorption spectra are less sensitive to the solvent polarity than the corresponding fluorescence spectra which show pronounced solvatochromic effect leading to large Stokes shifts. Using an efficient solvatochromic method, based on the molecular-microscopic empirical solvent polarity parameter E(T)(N), a large change of the dipole moment on excitation has been found. From an analysis of the solvatochromic behaviour of the UV-Vis absorption and fluorescence spectra in terms of bulk solvent polarity functions, f(epsilon(r),n) and g(n), a large excited-state dipole moment (mu(e) = 11D), almost perpendicular to the smaller ground-state dipole moment, was observed. This demonstrates the formation of an intramolecular charge-transfer excited state. Large changes of the fluorescence quantum yields as well as the fluorescence lifetimes with an increase of a solvent polarity cause that the new non-proteinogenic amino acid, 3-[2-(4-diphenylaminophenyl)benzoxazol-5-yl]-alanine methyl ester, is a new useful fluorescence probe for biophysical studies of peptides and proteins.  相似文献   

6.
共轭的分子内电荷转移化合物的光谱和光物理行为的研究,一直受到人们的关注[1-4].特别在Grabowski、Rettig等人[5-6]提出了所谓“扭曲的分子内电荷转移”(TICT)激发态问题后更是受到重视,这不仅是由于这类化合物具有十分广泛的应用前景,如用作荧光、激光染料、有机非线性光学材料等,而且还存在着一系列有待解决的科学问题.如分子内的电子效应及构家效应等对分子内电荷转移过程及发光行为的影响,电荷转移化合物在经光照激发后可引起分予极化,在周围溶剂分子的作用下,可通过“自去偶”过程达到稳定的电行分离状态即所谓的TICT态…  相似文献   

7.
The influence of conformation and aggregation on the hydrogen bond donor ability of fluorinated alcohol solvents [1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 1-phenyl-2,2,2-trifluoroethanol (PhTFE)] was explored theoretically (DFT) and experimentally (NMR, kinetics, crystal structure analyses). The detailed DFT analysis revealed a pronounced dependence of the H-bond donor ability on the conformation along the CO-bond of the monomeric alcohols. The donor orbital energy (sigma*(OH)) decreases and the molecular dipole moment (mu) increases drastically from the antiperiplanar (ap) to the synperiplanar (sp) H(C)COH conformation. The kinetics of olefin epoxidation with H(2)O(2) in HFIP indicate higher order solvent aggregates (2-3 monomers) to be responsible for the activation of the oxidant. Single-crystal X-ray analyses of HFIP and PhTFE confirmed the existence of H-bonded aggregates (infinite helices, ribbons, and cyclic oligomers) and the predominance of sc to sp conformations of the fluoroalcohol monomers. These aggregate structures served as the basis for a DFT analysis of the H-bond donor ability at the terminal hydroxyl group of HFIP mono- to pentamers. Both the LUMO energy and the natural charge of the terminal hydroxyl proton indicated a substantial cooperative influence of dimerization and trimerization on the H-bond donor ability. We therefore conclude that dimers and trimers, with the individual monomers in their sc to sp conformation, play a crucial role for the solvolytic and catalytic effects exerted by HFIP, rather than monomers.  相似文献   

8.
The absorption and fluorescence spectra of three extensively used laser dyes namely 1,1,4,4-tetraphenyl-1,3-butadiene (TPB), 2-(4'-t-butylphenyl)-5-(4'-biphenylyl)-1-oxa-3,4-diazole (BPBD), 1,4-bis[2-(2-methylphenyl)ethenyl]-benzene (Bis-MSB) have been recorded at room temperature (300K) in solvents of different polarities. The effects of the solvents upon the spectral properties are discussed. The ground-state dipole moments (mu(g)) were determined experimentally by Guggenheim and Higasi method separately and were compared with theoretical values obtained using quantum chemical method. The ground-state dipole moments obtained by using Guggenheim method were then used in the estimation of excited-state dipole moments (mu(e)) by using Lippert's, Bakhshiev's and Kawski-Chamma-Viallet's equations. In all the above three equations the variation of the Stokes shift with the solvent dielectric constant and refractive index was made use of. It was observed that dipole moments of excited state were higher than those of the ground state for all the dyes.  相似文献   

9.
Photophysical studies on coumarin-7 (C7) dye in different protic solvents reveal interesting changes in the properties of the dye on increasing the solvent polarity (Deltaf; Lippert-Mataga solvent polarity parameter) beyond a critical value. Up to Deltaf approximately 0.31, the photophysical properties of the dye follow good linear correlations with Deltaf. For Deltaf > approximately 0.31, however, the photophysical properties, especially the fluorescence quantum yields (Phi(f)), fluorescence lifetimes (tau(f)) and nonradiative rate constants (k(nr)), undergo large deviations from the above linearity, suggesting an unusual enhancement in the nonradiative decay rate for the excited dye in these high polarity protic solvents. The effect of temperature on the tau(f) values of the dye has also been investigated to reveal the mechanistic details of the deexcitation mechanism for the excited dye. Studies have also been carried out in deuterated solvents to understand the role of solute-solvent hydrogen bonding interactions on the photophysical properties of the dye. Observed results suggest that the fluorescence of the dye originates from the planar intramolecular charge transfer (ICT) state in all the solvents studied and the deviations in the properties in high polarity solvents (Deltaf > approximately 0.31) arise due to the participation of a new deexcitation channel associated with the formation of a nonfluorescent twisted intramolecular charge transfer (TICT) state of the dye. Comparing present results with those of a homologous dye coumarin 30 (C30; Photochem. Photobiol., 2004, 80, 104), it is indicated that unlike in C30, the TICT state of the C7 dye does not experience any extra stability in protic solvents compared to that in aprotic solvents. This has been attributed to the presence of intramolecular hydrogen bonding between the NH group (in the 3-benzimidazole substituent) of the C7 dye and its carbonyl group, which renders an extra stability to the planar ICT state, making the TICT state formation relatively difficult. Qualitative potential energy diagrams have been proposed to rationalize the differences observed in the results with C7 and C30 dyes in high polarity protic solvents.  相似文献   

10.
Evans L  Patonay G 《Talanta》1999,48(4):933-942
The effects of various solvents on the ground and excited states of chloroaluminum (III) tetrasulphonated naphthalocyanine (AlNcS(4)) were studied. Both the absorbance and fluorescence spectra were found to be influenced by the hydrogen bond donating ability of various solvents. As the hydrogen bond donating ability of the solvent increased, hypsochromic and bathochromic shifts in the absorbance and fluorescence spectra were observed in protic and aprotic solvents respectively. Plots of the absorbance and fluorescence maxima versus the E(T)(30) solvent parameter showed linear relationships in binary mixtures of protic-protic (methanol-H(2)O) and aprotic-protic (DMSO-H(2)O) solvents. Aggregation was indicated by a broad band in the ground state absorption spectra and a low quantum efficiency 0.04 relative to the efficiency observed in organic solvents. A face-to-face conformation of the monomeric subunits of the dimer is suggested due to the red-shifted absorbance band. The acid-base properties of the dye were studied and were indicative of a multi-step process. In acidic conditions (pH 1), protonation of the bridging nitrogen atoms was identified by a broad band appearing red-shifted to those obtained at higher pH values. Under slightly acidic conditions a pKa value of 6.7 was determined for one of the meso-nitrogen. In alkaline conditions a pKa of 11.5 was determined for another meso-nitrogen and a second fluorescence band emerged at 804 nm, red-shifted to the emission maxima.  相似文献   

11.
Intramolecular processes of deactivation of 1,3-dimethyl-4-thiouracil (DMTU) from the second excited singlet (S2) (pi, pi*) and the lowest excited triplet (T1) (pi, pi*) states have been studied using perfluoro-1,3-dimethylcyclohexane (PFDMCH) as a solvent. The spectral and photophysical (PP) properties of DMTU in CCl4, hexane and water have also been described. For the first time, the fluorescence from S2 state DMTU has been observed. The picosecond lifetime of DMTU in the S2 state (tau(S2)) in PFDMCH has been proposed to be determined by a very fast intramolecular reversible process of hydrogen abstraction from the ortho methyl group by the thiocarbonyl group. The shortening of tau(S2) in CCl4 is interpreted to be caused by the intermolecular interactions between DMTU (S2) and the solvent. Results of the phosphorescence decay as a function of DMTU concentration were analyzed using the Stern-Volmer formalism, which enabled determination of the intrinsic lifetime of the T1 state (tau0(T1)) and rate constants of self-quenching (k(sq)). The lifetimes, tau0(T1), of DMTU in PFDMCH and CCl4 are much longer than the values hitherto obtained in more reactive solvents. The PP properties of DMTU both in the S2 and T1 states have been shown to be determined by the thiocarbonyl group.  相似文献   

12.
Ultrafast relaxation dynamics of the S2 and S1 states of 4,4'-bis(N,N-dimethylamino)thiobenzophenone (Michler's thione, MT) have been investigated in different kinds of solvents, using steady-state absorption and emission as well as femtosecond transient absorption and fluorescence up-conversion spectroscopic techniques. Steady-state fluorescence measurements, following photoexcitation to the S2 state of MT, reveal weak fluorescence from the S2 state (phi F approximately 10(-3) in nonpolar and 10(-4) in polar solvents) but much weaker fluorescence from the S1 state. Yield of fluorescence from the S2 state is reduced in polar solvents because of reduced energy gap between the S2 and S1 states, Delta E(S2-S1), as well as interaction with the solvent molecules. Occurrence of S2-fluorescence in polar solvents, despite small energy gap, suggests that symmetry allowed S2(1A1) --> S0 (1A1) radiative and symmetry forbidden S2(1A1) --> S1 (1A2) nonradiative transitions are the factors responsible for the S2 fluorescence in MT. Lifetime of the S2 state is shorter (varying in the range 0.28-3.5 ps in different solvents) than that predicted from the Delta E(S2-S1) value and this can be attributed to its flexible molecular structure, which promotes an efficient intramolecular radiationless deactivation pathways. The lifetime of the S1 state (approximately 1.9-6.5 ps) is also very short because of small energy difference between the S1 and T1 states (Delta E(S1-T1) approximately 300 cm(-1)) in cyclohexane and hydrogen-bonding interaction as well as the presence of the isoenergetic T1(pipi*) state to enhance the rate of the intersystem crossing process from the S1(npi*) state in protic solvents.  相似文献   

13.
The photochemistry of trans-stilbene and four methoxy-substituted stilbene derivatives has been investigated in a variety of solvents. The fluorescence of all five trans isomers was quenched by 2,2,2-trifluoroethanol (TFE). Upon irradiation of the five substrates in TFE, the products derived from photoaddition of the solvent were detected. Nuclear magnetic resonance spectroscopy of the products formed by irradiation in TFE-OD indicated that the proton and nucleophile are attached to two adjacent atoms of the original alkene double bond. Irradiation of the corresponding methoxy-substituted styrenes and trans-1-arylpropenes in TFE produced the analogous solvent adducts. The photoaddition of TFE proceeded with the general order of reactivity: styrenes > trans-1-arylpropenes > trans-stilbenes. Transient carbocation intermediates were observed following laser flash photolysis of the stilbenes in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). The results are consistent with a mechanism that involves photoprotonation of the substrates by TFE or HFIP, followed by nucleophilic trapping of short-lived carbocation intermediates. Compared to the other stilbene derivatives, trans-3,5-dimethoxystilbene displayed a large quantum yield of fluorescence and a low quantum yield of trans-cis isomerization in polar organic solvents. The unique photophysical properties of trans-3,5-dimethoxystilbene are attributed to formation of a highly polarized charge-transfer excited state (mu(e) = 13.2 D).  相似文献   

14.
The fluorescence and laser properties of ten aromatic compounds, specially chosen from the p-oligophenylenes (D(2) symmetry) or m-oligophenylenes (C(2) or D(3) symmetry) are studied experimentally (at 293 K) and quantum chemically. The quantum yields, gamma and the decay times, tau(f) of fluorescence are measured for deaerated and non-deaerated cyclohexane solutions. The oscillator strengths, f(e) of the S(0)-->S(p) (1A-->(1)L(a)) and S(0)-->S(alpha) (1A-->(1)L(b)) transitions, fluorescence, k(f) and intersystem crossing, k(ST), rate constants, and natural lifetimes, tau(0)(T) are calculated. The lowest 1L(b), 1L(a) and 3L(b) (77 K) levels are determined. It is found that all p-oligophenylenes from p-terphenyl onwards are excellent, photochemically stable laser dyes although the solubility in this series decreases dramatically. On the basis of trends observed in p-oligophenylenes (D(2)-series) and on the properties of the experimentally studied m-oligophenylenes of the C(2)- and D(3)-series, the fluorescence and laser properties of other compounds from these series are estimated/predicted. It is shown, for the first time, that m-oligophenylenes of the C(2)-series, from 1,3-di(p-terphenyl)benzene will acquire fluorescence of 1L(a)-->(1)A nature and could be extremely effective laser dyes. It is also shown that m-oligophenylenes of the D(3)-series, from 1,3,5-tri(p-quaterphenyl)benzene will also acquire 1L(a)-->(1)A nature fluorescence and laser ability, although this would not be as good as that of compounds in the C(2)-series. It is concluded that m-oligophenylenes can be used not only for passive mode locking but some may also be used as laser dyes and scintillators. The results obtained are important for various practical purposes and theoretical considerations.  相似文献   

15.
Photophysical studies with semi-rigid, 1, and flexible, 2, donor-bridge-acceptor (D-b-A2+) molecules with D a porphyrin and A2+ a methyl viologen moiety, were performed in neat polar solvents as well as included in surfactant (DTAB) aqueous and in reverse AOT/n-alkane micelles. The micelles acted as nanoreactors for the photoinduced electron transfer reaction upon laser excitation. In spite of the longer lifetime of the charge separated (CS) state in the semi-rigid tetrad 1(ca. 200 ns vs. ca. 100 ns for the flexible dyad 2), the CS formation quantum yield, for example in acetonitrile, was lower for the former (phi(CS) = 0.13) than for the latter (0.58). Comparison of the time-resolved fluorescence data in neat solvent and in the micelles yielded the phi(CS) values in the dilute micellar solutions. Application of laser-induced optoacoustic spectroscopy at various temperatures to 1 dissolved in a polar organic solvent (benzonitrile, BZN) included in aqueous DTAB nanoreactors afforded structural volume changes for the production in hundreds of ps of the CS state upon excitation of a polar molecule. The contraction during CS formation upon excitation of the collapsed conformer in BZN is attributed to the entering of solvent into the open molecular cavity. The opening upon formation of the CS state due to photoinduced electron transfer in the 1 collapsed conformation arises from the repulsion of the two positively charged ends in this state, as previously calculated. Inclusion of 1 in reverse AOT micelles in various n-alkanes also led to a contraction upon excitation, but the data had much more error due to the limited range of variability of the ratio of thermoelastic parameters. The data obtained with the more flexible "supermolecule" 2 showed the predicted large conformation flexibility of these molecules.  相似文献   

16.
Dual intermolecular electron transfer (ELT) pathways from 4,4'-dimethoxybenzophenone (1) ketyl radical (1H*) in the excited state [1H*(D1)] to the ground-state 4,4'-dimethoxybenzophenone [1(S0)] were found in 2-methyltetrahydrofuran (MTHF) by observing bis(4-methoxyphenyl)methanol cation (1H+) and 4,4'-dimethoxybenzophenone radical anion (1*-) during nanosecond-picosecond two-color two-laser flash photolysis. ELT pathway I involved the two-photon ionization of 1H* following the injection of electron to the solvent. The solvated electron was quickly trapped by 1(S0) to produce 1*-. ELT pathway II was a self-quenching-like ELT from 1H*(D1) to 1(S0) to give 1H+ and 1*-. From the fluorescence quenching of 1H*(D1), the ELT rate constant was determined to be 1.0 x 10(10) M(-1) s(-1), which is close to the diffusion-controlled rate constant of MTHF. The self-quenching-like ELT mechanism was discussed on the basis of Marcus' ELT theory.  相似文献   

17.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

18.
The conformations of three cholate foldamers and one molecular basket were studied by fluorescence and NMR spectroscopy. In nonpolar solvents (e.g., hexane/ethyl acetate or ethyl acetate) mixed with a small amount of a polar solvent (e.g., alcohol or DMSO), the cholate oligomer folded into a helix with the hydrophilic faces of the cholates turned inward. Folding created a hydrophilic nanocavity preferentially solvated by the entrapped polar solvent concentrated from the bulk. This microphase separation of the polar solvent was critical to the folding process. Folding was favored by larger-sized polar solvent molecules, as fewer such molecules could occupy and solvate the nanocavity, thus requiring a smaller extent of phase separation during folding. Folding was also favored by smaller/acyclic nonpolar solvent molecules, probably because they could avoid contact with the OH/NH groups within the nanocavity better than larger/cyclic nonpolar solvent molecules.  相似文献   

19.
The spectrophysics of warfarin: implications for protein binding   总被引:1,自引:0,他引:1  
The photophysical behavior of the isomers of the anticoagulant drug warfarin in various solvents and solvent mixtures was investigated using absorption, 1H NMR, and steady-state and time-resolved fluorescence spectroscopies in conjunction with B3LYP-based theoretical treatments. Complex absorption patterns were observed, indicative of the presence of different isomers of warfarin in the various solvents studied. In alkaline aqueous solution, the deprotonated open side form of warfarin is highly dominant and only one S0-->S1 singlet transition could be observed in the absorption spectrum centered at 320 nm. These observations were supported by theoretical density functional calculations (B3LYP) in which the geometries of nine isomers of warfarin were optimized and their respective eight lowest singlet and three lowest triplet excitation energy levels were predicted. Examination of the fluorescence excitation and emission spectra of the isomers in nonpolar and polar organic solvents showed the presence of the deprotonated open side chain form of warfarin in 2-propanol, ethanol, and acetonitrile. Time-resolved fluorescence experiments revealed a short decay time constant, tau1, in all solvents studied while in more polar environments a second longer one, tau2, was evident varying between 0.5 and 1.6 ns depending on solvent polarity. The variation of number and length of fluorescence lifetimes as a function of solvent environment has provided a tool for examining warfarin protein binding. Studies on the binding of warfarin to human serum albumin (HSA) have been undertaken, and different modes of binding were observed which are indicative of binding to the anion-selective Sudlow I and, second, a lower affinity mode of interaction.  相似文献   

20.
Effect of temperature on the fluorescence anisotropy decay and the ultraslow component of solvation dynamics of coumarin 153 (C153) in a gamma-cyclodextrin (gamma-CD) nanocavity are studied using a picosecond set up. The steady-state anisotropy (0.13 +/- 0.01) and residual anisotropy (0.14 +/- 0.01) in fluorescence anisotropy decay in an aqueous solution containing 7 microM C153 and 40 mM gamma-CD are found to be quite large. This indicates formation of large linear nanotube aggregates of gamma-CD linked by C153. It is estimated that >53 gamma-CD units are present in each aggregate. In these aggregates with rise in temperature, the average solvation time ((obs)) decreases markedly from 680 ps at 278 K to 160 ps at 318 K. The dynamic Stokes shift is found to decrease from 800 cm(-1) at 278 K to 250 cm(-1) at 318 K. The fraction of dynamic Stokes shift (f(d)) detected in a picosecond set up is calculated using the Fee-Maroncelli procedure. The corrected solvation time ((corr) = f(d)<(tau(s)>(obs)) displays an Arrhenius type temperature dependence. From the temperature variation, the activation energy and entropy of the solvation process are determined to be 12.5 kcal M(-1) and 28 cal M(-1) K(-1), respectively. The ultraslow component and its temperature dependence are ascribed to a dynamic exchange between bound and free water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号