首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A systematic study on the geometrical structures, electronic and magnetic properties of Au5H n (n=1–10) clusters has been performed by using the all-electron scalar relativistic density functional theory with generalized gradient approximation at the PW91 level. It is found that all Au5H n clusters prefer to keep the planar structures like pure Au5 cluster, the Au5 structures in Au5H4, Au5H5 and Au5H6 clusters are distorted obviously. The adsorption of a number of hydrogen atoms enhances the stability of Au5 cluster and all Au5H n clusters are more stable than pure Au5 cluster energetically. The odd-even alteration of magnetic moment is observed in Au5H n clusters and may be served as the material with tunable code capacity of “0” and “1” by adsorbing odd or even number of H atoms. It seems that the most favorable adsorption between Au5 cluster and a number of hydrogen atoms takes place in the case that the odd number of hydrogen atoms is adsorbed onto Au5 cluster and becomes Au5H n cluster with even number of valence electrons.  相似文献   

2.
The lowest-energy geometries and electronic-structure properties have been obtained for AlnHn (n=1-10) clusters within the density-functional theory using the generalized gradient approximation for the exchange correlation potential. The resulting geometries show that the hydrogen atoms tend to occupy outside positions and no hollow positions are found. The subunit Aln of AlnHn (n=1-5) have little distortion, in comparison with corresponding pure Aln cluster, whereas the subunit Aln have large distortion from n=6. The stability has been investigated by analyzing the binding energy per atom and the second difference in energy, indicating that Al8H8 exhibit higher stability than others. The bonding property has been analyzed by calculating the Mulliken charges and Al–H distances. The calculated energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO), the vertical ionization potential, and the vertical electron affinity also confirm that Al8H8 is a stable cluster. The density of states (DOS) shows that AlnHn exhibit changes from molecular-like (Al1H1) to band-like structure (Al10H10) as n increases.  相似文献   

3.
给出了优化小分子在团簇表面吸附结构的遗传算法.结合经验势函数,搜寻了水分子在(TiO2)n(n=3—6)团簇上可能的吸附方式;利用B3LYP/6-31G**方法对各种吸附结构进行了优化.结果表明水分子主要通过O原子以非解离方式吸附到团簇中配位数较低或位置比较凸出的Ti原子上.分子轨道分析表明,水分子与团簇之间的成键主要来自吸附位Ti原子3s3p轨道的贡献,水分子的轨道保持了气相水分子中的基本特征,但离域化程度增大 关键词: 2团簇')" href="#">TiO2团簇 2O吸附')" href="#">H2O吸附 遗传算法 DFT  相似文献   

4.
In order to explore the proton/deuteron (H/D) isotope effect on the structures, wavefunctions, and size dependence of water clusters, both electronic and nuclear wavefunctions are determined simultaneously. The optimized centres and the exponents for the nuclear orbitals indicate the Ubbelohde effect, i.e. the deuteron has weaker hydrogen bonding than the proton. Calculations are made also of hydrogen halide water clusters, Such as HF(H2O)n, HBr(H2O)n, (n = 0–4), and their deuterated species. Only the hydrogen transferred ring structure is optimized for the protonic HBr (H2O)3 cluster, while both the hydrogen transferred and the non-transferred structures are obtained for the deuterated DBr (H2O)3 cluster under the one-particle multi-component treatment. The proton in the HF molecule is localized more than those in the HCl and HBr molecules, and no hydrogen transferred structures are obtained for HF water clusters.  相似文献   

5.
ABSTRACT

We reported the selected hydrogen absorption of Ge5Hn isomers and their Ge5Hn? anions in the size range of n?=?0–12 for the first time by B3LYP, BPW91, BHandHLYP and BP86 methods in combination with 6-311++G** basis sets. The optimum geometrical structure, relative stability, electronic properties and dissociation behaviour of Ge5Hn (n?=?0–12) cluster and their Ge5Hn? anions were systematically analysed by a series of methods and can be applied to the study of more complex cluster systems. H bridged structure and double H bridged structures were found in the size range of n?=?1–6 in neutral clusters and corresponding anion with triangular bipyramidal framework of Ge5. The visible odd-even oscillations were observed in the study of change rules with increasing size from the Δ2E(n), H-dissociation energy (De), HOMO–LUMO band-gap (Egap) and electron affinity (EA) energy. This conclusion indicated that Ge5Hn clusters with even H atoms were more stable than clusters with odd H atoms. The infrared spectra of the Ge5Hn (n?=?0–12) clusters were also simulated which will further stimulate study on germanium-based nanomaterials.  相似文献   

6.
The recently proposed dynamic extended molecular orbital (DEMO) method is applied to the HCl(H2O) n and DCl(H2O) n (n = 0–4) clusters in order to explore the isotope effect on their structures, wavefunctions, and energies, theoretically. Since the DEMO method determines both electronic and nuclear wavefunctions simultaneously by optimizing all parameters including basis sets and their centres variationally, we can get the different nuclear orbitals for proton and deuteron as well as their electronic wavefunctions. The positions of the centres of nuclear orbitals show that the deuteron has weaker hydrogen bonding than the proton. There are three isomers in the case of n = 3 clusters, and less stable isomers have hydrogen transferred and non-transferred structures. In the conventional MO calculation, both hydrogen transferred and non-transferred isomers are calculated to be energy minima. When we have applied the DEMO method, only the hydrogen transferred structure is obtained for HCl(H2O)3, while both structures are optimized for DCl(H2O)3. Such strong H/D dependence on the structures of the HCl(H2O) n and DCl(H2O) n clusters can be expressed directly by using the DEMO method. The present application demonstrates that the DEMO method is a useful tool for analysing the anharmonicity and vibronic effects of a hydrogen bonding system.  相似文献   

7.
闫静  徐位云  郭辉  龚毓  宓一鸣  赵新新 《物理学报》2015,64(1):16802-016802
为了说明钡助剂的存在形式, 本文采用第一性原理方法研究了BaxOy小团簇修饰Ru(0001)表面的结构稳定性和氮分子吸附性质. 基于总能的热力学分析发现, 在实验条件下(500 K, PH2O/PH2<10-3), Ba2O团簇比BaO2, BaO, Ba和O等团簇(原子)更加稳定. 这证实含有金属性钡原子的团簇也是氧化钡助剂可能的工作状态. 表面电荷差分密度说明Ba2O团簇的氧和钡原子与衬底的作用不同. 不过Ba2O团簇氧和钡原子附近的氮分子吸附行为相似, Ba2O团簇增强了氮分子和衬底的相互作用. Ba2O团簇氧和钡原子附近的氮分子吸附能分别为0.78 和0.88 eV, 均大于清洁表面的0.67 eV. 氮分子间距和氮分子的拉伸振动频率都表明Ba2O团簇在一定程度上活化了吸附氮分子. Ba2O团簇氧和钡原子附近的N–N键长分别为0.117和0.116 nm, 大于清洁表面的0.114 nm. 氧和钡原子附近氮分子的拉伸振动频率分别为 1888 和1985 cm-1, 小于清洁表面的2193 cm-1. 电荷差分密度的计算结果说明, 削弱作用主要来自于Ba2O团簇中钡离子和氮分子间的静电作用. 两者间的静电作用增加了氮分子π 反键轨道的占据数, 促进了氮分子极化, 从而削弱氮分子键.  相似文献   

8.
An all-electron scalar relativistic calculation on Au n NO (n = 1–10) clusters has been performed by using density functional theory with the generalized gradient approximation at the PW91 level. The small gold cluster would like to bond with nitric and the nitric monoxide molecule prefers to occupy the on-top and single fold coordination site. The Au n structures in all Au n NO clusters are only distorted slightly and still keep the planar structures. With the bend of Au-N-O bond, the structures of Au n NO clusters evolve from the 2D structure to 3D structure. The most favorable adsorption between small gold cluster and nitric monoxide molecule takes place in the case that nitric monoxide molecule is adsorbed onto an odd-numbered pure Au n cluster and becomes odd-numbered Au n NO cluster with even number of valence electrons. The scalar relativistic effect strengthens the Au–Au, Au–N interaction and weakens the N–O interaction, appearing as the shorter Au–Au, Au–N bond-length and the longer N–O bond-length. The differences between our work and previous work are believed to be the reflection of the scalar relativistic effect.  相似文献   

9.
张秀荣  王杨杨  李维军  袁爱华 《物理学报》2013,62(5):53603-053603
采用密度泛函理论(density functional theory, DFT) 在B3LYP/LANL2DZ基组水平上对钨团簇吸附CO分子进行了系统研究. 结果表明, WnCO团簇的基态结构是在Wn团簇中性或阴离子基态结构的基础上吸附CO生长而成; CO的吸附以端位吸附为主,桥位吸附为辅; CO分子在Wn团簇表面发生的是非解离性吸附. 与优化的CO键长(0.116 nm)相比,吸附后C-O键长变长(0.120–0.123 nm), 表明吸附后C-O键被削弱, CO分子被活化了.稳定性分析表明,在所研究的团簇中, W3CO和W5CO团簇的稳定性较强;自然键轨道(NBO)分析表明, W原子与CO分子相互作用的本质是CO分子内的杂化轨道与W原子6s, 5d, 6p和6d轨道相互作用的结果. 关键词: nCO (n= 1–6)团簇')" href="#">WnCO (n= 1–6)团簇 基态构型 稳定性 电子性质  相似文献   

10.
张安超  孙路石  向军  郭培红  刘志超  苏胜 《物理学报》2011,60(7):73103-073103
采用密度泛函理论中的广义梯度近似对Hg与小团簇Au qn (n=1—6, q=0, +1, -1)的相互作用进行了系统研究. 结果表明,除Au5+,-团簇外,前线分子轨道理论可以成功预测大部分Au n Hg q 复合物的最低能量结构. Aun团簇对Hg的吸附受团簇尺寸大小和团簇所携带电荷的影 关键词: 密度泛函理论 汞 金团簇 吸附能  相似文献   

11.
With density-functional theory, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and La-doped Mg(0001) surfaces are studied. Calculation results show that the energy barrier obtained for hydrogen dissociation on the La-doped Mg(0001) surface is smaller due to back-donated bonding between molecular H2 and doped La atom. The obtained diffusion barriers (0.8–0.22 eV) imply a fast motion of atomic H on La-doped Mg(0001) surface.  相似文献   

12.
An all-electron scalar relativistic calculation on AunH2S (n = 1-13) clusters has been performed by using density functional theory with the generalized gradient approximation at PW91 level. The small gold cluster would like to bond with sulfur in the same plane and the H2S molecule prefers to occupy the on-top and single fold coordination site in the cluster. The Aun structures and H2S molecule in all AunH2S clusters are only slightly perturbed and still maintain their structural integrity. After adsorption, the S-H, H-H bond-lengths and most Au-Au bond-lengths are elongated, only a few Au-Au bond-lengths far from H2S molecule are shortened. The reactivity enhancement of H2S molecule is obvious and the strong gold-sulfur bond is observed expectedly. The most favorable adsorption takes place in the case that the H2S molecule is adsorbed by an even-numbered Aun cluster and becomes AunH2S cluster with even number of valence electrons. It is believed that the strong scalar relativistic effect is favorable to H2S molecule adsorption onto small gold clusters and is also one of the important reasons for the strong gold-sulfur bond.  相似文献   

13.
Coadsorption effects of molecular hydrogen and small hydrocarbons, CH4 and C3H6, on free Au3 + and Au5 + were investigated in an octopole ion trap under multi-collision conditions. For hydrogen and methane the observations indicate that both molecules coadsorb on the same adsorption site, i.e., the same atom of the cluster. This type of molecular adsorption on free clusters is termed permissive coadsorption, in contrast to competitive coadsorption, in which two molecules compete for the same adsorption site. The latter case was observed for hydrogen and propylene: already trace amounts of propylene were able to completely saturate the clusters preventing the coadsorption of H2. The size dependent adsorbate coverage is discussed and implications on the cluster structure are deduced from time and temperature dependent reaction measurements.  相似文献   

14.
In this review, we present our recent first principles studies on the sequential H2 dissociative chemisorption and H desorption on the Pt n and Pd n clusters (n=2–9, 13). Upon full saturation by H atoms, the calculated H2 dissociative chemisorption energy and H desorption energy on Pt13 and Pd13 clusters are similar to the corresponding values on smaller close-packed clusters. Indeed, the catalytic performances of these subnano clusters do not vary significantly with the particle sizes or shapes. Instead, they are dependent on the surface metal atoms which can be accessed by H atoms. In addition to the coverage dependency of the H2 dissociative chemisorption and H sequential desorption energies, the phase transition of both Pt13 and Pd13 from the icosahedral to fcc-like structures at certain H coverage was also investigated.   相似文献   

15.
The solute-solvent interactions of hydrogen-bonded phenol-(H2O)n (n=3-5) clusters in electronic excited states were investigated by means of the time-dependent density functional theory (TDDFT) method. The geometric structures and IR spectra in ground state, S1 state, and T1 state of the clusters, were calculated using the density functional theory (DFT) and TDDFT methods. Only the ring form isomer, the most stable one of the cluster, was considered in this study. Four, five and six intermolecular hydrogen bonds were formed in phenol-(H2O)3, phenol-(H2O)4, and phenol-(H2O)5 clusters, respectively. Based on the analysis of IR spectra, it is revealed that the “window region” between unshifted and shifted absorption bands in both S1 and T1 state becomes broader compared with that in ground state for the corresponding clusters. Furthermore, two interesting phenomenon were observed: (1) with the anticlockwise order of the ring formed by the intermolecular hydrogen bonds in the H-bonded phenol-(H2O)n (n=3-5) clusters, the strengths of the intermolecular hydrogen bonds decrease in all the S0, S1 and T1 states; (2) upon electronic excitation, the smaller the distance between phenol and water is, the larger the change of intermolecular hydrogen bonds strength is. Moreover, the intermolecular hydrogen bond (phenolic OH is the H donor) is strengthened in excited state compared with that in ground state. But the intermolecular hydrogen bond (phenolic OH is the H acceptor) is weakened in excited state.  相似文献   

16.
Soumen Saha 《Molecular physics》2015,113(19-20):3031-3041
The current study describes the development of a general equation of cooperativity energy (CE) for an n-mer system based on the difference between interaction energy of the system and the sum of interaction energy of its dimeric subunits. The counterpoise corrected generalised CE equation of n-mer system has also been developed. In order to validate these two generalised equations, we have considered four different kinds of water clusters, viz. W1D, W2D, W2D-H and W3D, ((H2O)n: n = 3–10), with the increasing cluster size as well as changing arrangements. The CE obtained from the two generalised equations follow the trend W3D > W2D-H > W2D > W1D. The deviation at n = 6 for W3D clusters in the plot of CE with cluster size has also been observed for O–H stretching frequencies, electron density and the Laplacian of the electron density plots. The contrastingly higher CE for cyclic pentamer compared to hexamer is in accordance with earlier observations as well as computed average hydrogen bond lengths. We have observed that the average charge value is more on oxygen atoms of pentamer than hexamer resulting in the shortening of hydrogen bond in pentamer and hence the CE values are more for pentamer than hexamer. We have shown that CE has the capability to quantify the cooperativity effect in water clusters.  相似文献   

17.
雷雪玲 《中国物理 B》2010,19(10):107103-107103
This paper studies the small molybdenum clusters of Mon (n=2--8) and their adsorption of N2 molecule by using the density functional theory (DFT) with the generalized gradient approximation. The optimized structures of Mon clusters show the onset of a structural transition from a close-packed structure towards a body-centred cubic structure occurred at n=7. An analysis of adsorption energies suggests that the Mo2 is of high inertness and Mo6 cluster is of high activity against the adsorption of N2. Calculated results indicate that the N2 molecule prefers end-on mode by forming a linear or quasi-linear structure Mo--N--N, and the adsorption of nitrogen on molybdenum clusters is molecular adsorption with slightly elongated N--N bond. The electron density of highest occupied molecular orbital and lowest unoccupied molecular orbital, and the partial density of states of representative cluster are also used to characterize the adsorption properties of N2 on the sized Mon clusters.  相似文献   

18.
The processes of cluster formation in liquid alcohols, water, methanol, n-hexanol, and n-hexane have been investigated by the method of flicker-noise spectroscopy. Two types of clusters — clusters with a close-packed structure and clusters with a loose structure — have been detected. The energy of formation of different clusters in methanol and n-hexane ranges, respectively, from −250 to +250 J/mole and from −50 to +50 J/mole. The smallest clusters of methanol, n-hexanol, water, and n-hexane consist, respectively, of six, two, eleven, and two molecules, and their largest clusters represent oscillators consisting, respectively, of 50,400, 17,200, 93,500, and 33,150 molecules at 274 K. In methanol at 271 K, more than 44 types of clusters consisting of 6, 97, 152, 219, 297, 492, 1029, 1368, 1560, etc. molecules were detected. In n-hexanol at 273 K, 57 types of clusters were detected. Models of small clusters are proposed. In water, the content of close-packed clusters is maximum at 277 K. The energy of formation/decomposition of small clusters in water ranges from −0.4 to +0.4 kJ/mole and increases with increase in the water temperature. The hysteresis of transformation of the (H2O)280 cluster in the process of heating and cooling of water in the temperature range 273–280 K was detected. Series of energy spectra of clusters in liquids at different temperatures are presented and discussed. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 3, pp. 305–312, May–June, 2005.  相似文献   

19.
Structures, electronic and magnetic properties of Mn and Mn2 doped stoichiometric (GaO) n clusters with n = 1−7 are studied in the framework of density functional theory. Doping of a Mn atom is found to be energetically favorable in (GaO) n clusters and the equilibrium configurations are found to be determined by the metal–oxygen interactions. Mn prefers to maximize the number of Mn–O bonds by selecting a Ga site in the cluster which increases its coordination with oxygen. Addition of a Mn atom in Mn(GaO) n clusters results into the ground state to be either ferromagnetic or antiferromagnetic depending on the Mn coordination number and the Mn–Mn bond-length in the given Mn2(GaO) n cluster.  相似文献   

20.
ABSTRACT

Structures of small lengths of capped (3,3), (4,4) and (5,5) single-walled carbon nanotubes (SWCNTs) and their structures decorated by Pt atom and Ptn clusters (n = 2–4) were obtained using density functional theory calculations. Binding abilities of Pt atom and Ptn clusters on the outer surface of SWCNTs at various adsorption sites were explored. Adsorptions of H2 onto Pt atom of the Pt-decorated (3,3), (4,4) and (5,5) SWCNTs were studied and their adsorption energies are reported. The thermodynamic properties and equilibrium constants for H2 adsorptions on the Pt4-decorated (3,3), (4,4) and (5,5) SWCNTs were obtained. The adsorption of H2 on the Pt atom of the Pt4/(3,3) SWCNT was found to be the most preferred reaction of which enthalpy and free energy changes at room temperature are ?46.61 and ?23.99 kcal/mol, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号