首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
We present a framework for a self-consistent theory of spall fracture in ductile materials, based on the dynamics of void nucleation and growth. The constitutive model for the material is divided into elastic and “plastic” parts, where the elastic part represents the volumetric response of a porous elastic material, and the “plastic” part is generated by a collection of representative volume elements (RVEs) of incompressible material. Each RVE is a thick-walled spherical shell, whose average porosity is the same as that of the surrounding porous continuum, thus simulating void interaction through the resulting lowered resistance to further void growth. All voids nucleate and grow according to the appropriate dynamics for a thick-walled sphere made of incompressible material. The macroscopic spherical stress in the material drives the response in all volume elements, which have a distribution of critical stresses for void nucleation, and the statistically weighted sum of the void volumes of all RVEs generates the global porosity. Thus, macroscopic pressure, porosity, and a distribution of growing microscopic voids are fully coupled dynamically. An example is given for a rate-independent, perfectly plastic material. The dynamics of void growth gives rise to a rate effect in the macroscopic material even though the parent material is rate independent.  相似文献   

2.
A numerical procedure to solve turbulent flow which makes use of the κ–? model has been developed. The method is based on a control volume finite element method and an unstructured triangular domain discretization. The velocity-pressure coupling is addressed via the vorticity-streamfunction and special attention is given to the boundary conditions for the vorticity. Wall effects are taken into account via wail functions or a low-Reynolds-number model. The latter was found to perform better in recirculation regions. Source terms of the κ and ε transport equations have been linearized in a particular way to avoid non-realistic solutions. The vorticity and streamfunction discretized equations are solved in a coupled way to produce a faster and more stable computational procedure. Comparison between the numerical predictions and experimental data shows that the physics of the flow is correctly simulated.  相似文献   

3.
This paper presents the application of a new constitutive damage model for an epoxy matrix on micromechanical analyses of polymer composite materials. Different representative volume elements (RVEs) are developed with a random distribution of fibres. Upon application of periodic boundary conditions (PBCs) on the RVEs, different loading scenarios are applied and the mechanical response of the composite studied. Focus is given to the influence of the interface between fibre and matrix, as well as to the influence of the epoxy matrix, on the strength properties of the composite, damage initiation and propagation under different loading conditions.  相似文献   

4.
王涛  陈莘莘 《力学季刊》2021,42(3):507-516
作为一种最近发展起来的半解析数值方法,插值型无单元伽辽金比例边界法不仅无需基本解,且在处理应力奇异性问题和无限域问题时十分有效.为了更有效地求解粘弹性问题,对插值型无单元伽辽金比例边界法应用于此类问题进行了研究,并发展了相应的算法. 通过时域分段展开,将时空耦合的初边值问题转化为一系列递推形式的边值问题,然后采用插值型无单元伽辽金比例边界法进行自适应计算.在径向保持解析特性的基础上,环向采用无单元伽辽金法离散可简化前处理和后处理工作量.此外,改进的插值型移动最小二乘法形函数具有插值性,有效地解决了本质边界条件不能直接施加的困难.最后给出了数值算例,并验证了所提方法的有效性和正确性.  相似文献   

5.
A method of global–local analysis is developed for quasi-static equilibrium problems for granular media. The two-scale modeling based on mathematical homogenization theory enables us to formulate two separate boundary value problems in terms of macro- and microscales. The macroscale problem governs the equilibrium of a global structure composed of granular assemblies, while the microscale one is posed for the particulate nature of a local structure with the friction-contact mechanism between particles. The local structure is identified with a periodic representative volume element, or equivalently, a unit cell, over which averaging is performed. The mechanical behavior of unit cells is analyzed by a discrete numerical model, in which spring and friction devices connect rigid particles, whereas the continuum-based finite element method is used for the macroscopic one. Representative numerical examples are presented to demonstrate the capability of the proposed two-scale analysis method for granular materials.  相似文献   

6.
7.
Since polymers play an increasingly important role in both structural and tribological applications, understanding their intrinsic mechanical response is key. Therefore in the last few decades much effort has been devoted into the development of constitutive models that capture the polymers' intrinsic mechanical response quantitatively. An example is the Eindhoven Glassy Polymer model. In practice most polymers are filled, e.g. with hard particles or fibers, with colorants, or with soft particles that serve as impact modifiers. To characterize the influence of type and amount of filler particles on the intrinsic mechanical response, we designed model systems of polycarbonate with different volume fractions of small, order 100 nm sized, either hard or soft particles, and tested them in lubricated uniaxial compression experiments. To reveal the local effects on interparticle level, three-dimensional representative volume elements (RVEs) were constructed. The matrix material is modeled with the EGP model and the fillers with their individual mechanical properties. It is first shown that (only) 32 particles are sufficient to capture the statistical variations in these systems. Comparing the simulated response of the RVEs with the experiments demonstrates that in the small strain regime the stress is under-predicted since the polymer matrix is modeled by using only one single relaxation time. The yield- and the large strain response is captured well for the soft-particle filled systems while, for the hard-particles at increased filler loadings, the predictions are less accurate. This is likely caused by polymer–filler interactions that result in accelerated physical aging of the polymer matrix close to the surfaces. Modifying the Sa-parameter, that captures the thermodynamic state of the polymer matrix, allows us to correctly predict the macroscopic response after yield. The simulations reveal that all rate-dependencies of the different filled systems originate from that of the polymer matrix. Finally, an onset is presented to predict local and global failure based on critical events on the microlevel, that are likely to cause the over-prediction in the large-strain response of the hard-particle filled systems.  相似文献   

8.
Recent advances in computational speed have resulted in the ability to model composite materials using larger representative volume elements (RVEs) with greater numbers of inclusions than have been previously studied. Imposing periodic boundary conditions on very large RVEs can mean enforcing thousands of constraint equations. In addition, a periodic mesh is essential for enforcing the constraints. The present study investigates a method that uses a local implementation of the constraints that does not adversely affect the computational speed. The present study demonstrates the method for two-dimensional triangular and square RVEs of periodically-spaced regular hexagonal and square arrays of composite material containing fibers of equal radii. To impose the boundary conditions along the edges, this study utilizes a cubic interpolant to model the displacement field along the matrix edges and a linear interpolant to model the field along the fiber edges. It is shown that the method eliminates the need for the conventional node-coupling scheme for imposing periodic boundary conditions, consequently reducing the number of unknowns to the interior degrees of freedom of the RVE along with a small number of global parameters. The method is demonstrated for periodic and non-periodic mesh designs.  相似文献   

9.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

10.
After recalling the constitutive equations of finite strain poroelasticity formulated at the macroscopic level, we adopt a microscopic point of view which consists of describing the fluid-saturated porous medium at a space scale on which the fluid and solid phases are geometrically distinct. The constitutive equations of poroelasticity are recovered from the analysis conducted on a representative elementary volume of porous material open to fluid mass exchange. The procedure relies upon the solution of a boundary value problem defined on the solid domain of the representative volume undergoing large elastic strains. The macroscopic potential, computed as the integral of the free energy density over the solid domain, is shown to depend on the macroscopic deformation gradient and the porous space volume as relevant variables. The corresponding stress-type variables obtained through the differentiation of this potential turn out to be the macroscopic Boussinesq stress tensor and the pore pressure. Furthermore, such a procedure makes it possible to establish the necessary and sufficient conditions to ensure the validity of an ‘effective stress’ formulation of the constitutive equations of finite strain poroelasticity. Such conditions are notably satisfied in the important case of an incompressible solid matrix.  相似文献   

11.
12.
Summary  The paper investigates algorithms for the computation of homogenized stresses and overall tangent moduli of microstructures undergoing small strains. Typically, these microstructures define representative volumes of nonlinear heterogeneous materials such as inelastic composites, polycrystalline aggregates or particle assemblies. We consider a priori given discretized microstructures, without focusing on details of specific discretization techniques in space and time. The key contribution of the paper is the construction of a family of algorithms and matrix representations of the overall properties of discretized microstructures. It is shown that the overall stresses and tangent moduli of a typical microstructure may exclusively be defined in terms of discrete forces and stiffness properties on the boundary. We focus on deformation-driven microstructures, where the overall macroscopic deformation is controlled. In this context, three classical types of boundary conditions are investigated: (i) linear displacements, (ii) constant tractions and (iii) periodic displacements and antiperiodic tractions. Incorporated by the Lagrangian multiplier method, these constraints generate three classes of algorithms for the computation of equilibrium states and the overall properties of microstructures. The proposed algorithms and matrix representations of the overall properties are formally independent of the interior spatial structure and the local constitutive response of the microstructure and are therefore applicable to a broad class of model problems. We demonstrate their performance for some representative model problems including elastic–plastic deformations of composite materials. Received 29 May 2001; accepted for publication 2 January 2002  相似文献   

13.
14.
The evolutive elastic-plastic analysis problem is addressed by a time/space discretization procedure via energy methods. Using the maximum plastic work theorem in conjuction with an assumed material evolutive model, the initial/boundary value problem of rate-form plasticity is transformed into a sequence of boundary value problems of deformation-theory plasticity (weighted step problems). The main purpose of the paper is to establish a couple of boundary/domain variational principles of deformation-theory plasticity, namely a constrained stationarity principle and a saddle-point one, each of which is able to characterize the solution of the typical step problem. Through suitable space discretizations by boundary and interior elements, the aforementioned principles are then given algebraic forms and the related Kuhn-Tucker conditions are shown to provide the symmetric sign-definite solving equation system for the fully discretized step problem.  相似文献   

15.
This paper details a procedure to determine lower bounds on the size of representative volume elements (RVEs) by which the size of the RVE can be quantified objectively for random heterogeneous materials. Here, attention is focused on granular materials with various distributions of inclusion size and volume fraction of inclusions. An extensive analysis of the RVE size dependence on the various parameters is performed. Both deterministic and stochastic parameters are analysed. Also, the effects of loading mode and the parameter of interest are studied. As the RVE size is a function of the material, some material properties such as Young's modulus and Poisson's ratio are analysed as factors that influence the RVE size. The lower bound of RVE size is found as a function of the stochastically distributed volume fraction of inclusions; thus the stochastic stability of the obtained results is assessed. To this end a newly defined concept of stochastic stability (DH-stability) is introduced by which stochastic effects can be included in the stability considerations. DH-stability can be seen as an extension of classical Lyapunov stability. As is shown, DH-stability provides an objective tool to establish the lower bound nature of RVEs for fluctuations in stochastic parameters.  相似文献   

16.
By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper. According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed, and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castañeda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.  相似文献   

17.
Introduction Thestudyonnonlineartransienttransferproblemsissignificantpracticallyand theoretically[1,2].Insolvingtheseproblemsdiscretelyinthetimedomain,eitherbyiterative techniques,orbylinearizingapproachesbasedonsomeadditionalassumptions,the adaptabilityofcomputingaccuracytothechangeofthesizeoftimestepneedtobetakeninto account[3].Yang[3]presentedaprecisealgorithminthetimedomaintosolvetransfer problems,themajoradvantagesofthisalgorithmtosolvenonlinearproblemsisthatno additionalassumptionandite…  相似文献   

18.
19.
A new boundary element procedure is developed for the solution of the streamfunction–vorticity formulation of the Navier–Stokes equations in two dimensions. The differential equations are stated in their transient version and then discretized via finite differences with respect to time. In this discretization, the non-linear inertial terms are evaluated in a previous time step, thus making the scheme explicit with respect to them. In the resulting discretized equations, fundamental solutions that take into account the coupling between the equations are developed by treating the non-linear terms as in homogeneities. The resulting boundary integral equations are solved by the regular boundary element method, in which the singular points are placed outside the solution domain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号