首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated a rapid, simple, and highly efficient on-line preconcentration method using in micellar electrokinetic chromatography (MEKC) for the analysis of abused drugs. Ketamine is an anesthetic that has been abused as a hallucinogen. We applied the sample sweeping technique first to ketamine and its major metabolite, norketamine, and separated the analytes with MEKC. Several of the sweeping MEKC parameters to effect successful separations, such as the concentration of sodium dodecyl sulfate (SDS), the injection time, and the applied voltage were optimized. The improvements in the number of theoretical plates under the different separation conditions are presented clearly in a three-dimensional representation. The limits of detection were 2.8, 3.4, and 3.3 ng/mL for ketamine, norketamine, and ketamine-D(4), respectively. The enrichment factor for each compound was within the range of 540-800. Experimental results are in agreement with those of analysis conducted by gas chromatography/mass spectroscopy (GC/MS). Therefore, we believe that sweeping, combined with MEKC, represents a suitable complementary method to GC/MS for use in clinical and forensic analyses of ketamine and norketamine.  相似文献   

2.
An enantioselective high-performance liquid chromatographic assay for the quantitation of the enantiomers of ketamine and its major metabolite norketamine in human plasma is described (assay I). The procedure involved extraction of the compounds from alkalized plasma into cyclohexane. Stereoselective separation was achieved with a prepacked alpha 1-acid glycoprotein column without any derivatization procedure. A second assay using a conventional reversed-phase column to determine total (racemic) ketamine and norketamine is also described. Because of interfering plasma peaks (assay II) the cyclohexane solution was reextracted into 1 M hydrochloric acid. The detection wavelength was 215 nm for all substances. The limit of quantification of the method was ca. 40 ng/ml in plasma. The assays were sensitive and reproducible. The method was demonstrated to be sensitive for stereoselective pharmacokinetic studies of ketamine after clinical doses.  相似文献   

3.
An anti-ketamine molecularly imprinted polymer (MIP) was synthesized and used as the sorbent in a solid-phase extraction protocol to isolate ketamine and norketamine from human hair extracts prior to LC-MS/MS analysis. Under optimised conditions, the MIP was capable of selectively rebinding ketamine, a licensed anaesthetic that is widely misused as a recreational drug, with an apparent binding capacity of 0.13 μg ketamine per mg polymer. The limit of detection (LOD) and lower limit of quantification (LLOQ) for both ketamine and norketamine were 0.1 ng/mg hair and 0.2 ng/mg hair, respectively, when 10 mg hair were analysed. The method was linear from 0.1 to 10 ng/mg hair, with correlation coefficients (R 2) of better than 0.99 for both ketamine and norketamine. Recoveries from hair samples spiked with ketamine and norketamine at a concentration of 50 ng/mg were 86% and 88%, respectively. The method showed good intra- and interday precisions (<5%) for both analytes. Minimal matrix effects were observed during the LC-MS/MS analysis of ketamine (ion suppression −6.8%) and norketamine (ion enhancement +0.2%). Results for forensic case samples demonstrated that the method successfully detected ketamine and norketamine concentrations in hair samples with analyte concentrations ranging from 0.2 to 5.7 ng/mg and from 0.1 to 1.2 ng/mg, respectively.  相似文献   

4.
A new method for the rapid and simultaneous detection of ketamine and its major metabolite, norketamine, in rat hair has been developed by combining micropulverized extraction and ultraperformance liquid chromatography–electrospray ionization mass spectrometry. By using reversed‐phase UPLC, ketamine and norketamine were well separated within 2 min. Using ketamine‐dosed rat hair, the conditions for micropulverized extraction were optimized, and the limits of detection and quantification of the developed method were found to be 1.7 and 5.7 pg/mg hair for ketamine, respectively. The precisions achieved with this method were slightly better than that obtained with conventional acidic methanol extraction method. Using this proposed method, analysis of the washed rat hair could be completed within 16–17 min. This method is expected to be applied for the analysis of the hair samples of not only rats but also ketamine abusers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A liquid chromatography-tandem mass spectrometry method was developed for the determination of ketamine (with its metabolite norketamine) and some amphetamines (amphetamine, methamphetamine, methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine). This method was developed to determine these compounds in hair and is able to simultaneously quantify all of them in human hair. Hair samples (20 mg) were washed and pulverized, and an extraction with formic acid (0.01%) and ultrasonication for 4 h was used. Deuterated analogs of the analytes were used as internal standards for quantification. Linearity from 0.5 to 25 ng/mg was obtained for both ketamine (and norketamine) and amphetamines with correlation coefficients exceeding 0.99. The limit of detection and the limit of quantification obtained were 0.1 and 0.5 ng/mg, respectively, for ketamine and amphetamines. A total of 25 hair samples from known drug abusers (relating to designer drug consumption or consumption of amphetamines) were examined by this validated method. The results show that the proposed method is suitable for testing these drugs in a single sample of hair. In addition, it is simpler and faster than analysis by conventional methods such as gas chromatography-mass spectrometry, which usually require a more laborious extraction procedure and, in most of cases, an additional derivatization process.  相似文献   

6.
A liquid chromatography/atmospheric pressure ionization mass spectrometry has been developed for the determination of ketamine, norketamine, and dehydronorketamine in human urine. A separation of these analytes in urine samples without tedious pretreatment procedures has been achieved within 10 min. Linear calibration curves of these analytes with coefficients better than 0.998 have been obtained over a wide range from 12.5 to 200 ng/mL. The accuracy was between 2.1% and 7.2% with detection limits at levels of 0.02 ng/mL, 0.02 ng/mL and 0.93 ng/mL for ketamine, norketamine and dehydronorketamine, respectively. The results demonstrate the suitability of the liquid chromatography/atmospheric pressure ionization mass spectrometry approach to analyze trace ketamine, norketamine and dehydronorketamine in urine. Urinary ketamine and norketamine levels were relatively low at 4–24 h intervals and were difficult to assay in a normal laboratory. In the present study, the determination of urinary dehydronorketamine levels at 2–24 hours appears to have a great potential for use in Schedule III controlled drugs management.  相似文献   

7.
Ketamine, a phencyclidine derivative, is used for induction of anesthesia, as an anesthetic drug for short term surgical interventions and in subanesthetic doses for postoperative pain relief. Ketamine undergoes extensive hepatic first-pass metabolism. Enantioselective capillary electrophoresis with multiple isomer sulfated β-cyclodextrin as chiral selector was used to identify cytochrome P450 enzymes involved in hepatic ketamine and norketamine biotransformation in vitro. The N-demethylation of ketamine to norketamine and subsequently the biotransformation of norketamine to other metabolites were studied via analysis of alkaline extracts of in vitro incubations of racemic ketamine and racemic norketamine with nine recombinantly expressed human cytochrome P450 enzymes and human liver microsomes. Norketamine was formed by CYP3A4, CYP2C19, CYP2B6, CYP2A6, CYP2D6 and CYP2C9, whereas CYP2B6 and CYP2A6 were identified to be the only enzymes which enable the hydroxylation of norketamine. The latter two enzymes produced metabolic patterns similar to those found in incubations with human liver microsomes. The kinetic data of ketamine N-demethylation with CYP3A4 and CYP2B6 were best described with the Michaelis–Menten model and the Hill equation, respectively. This is the first study elucidating the individual enzymes responsible for hydroxylation of norketamine. The obtained data suggest that in vitro biotransformation of ketamine and norketamine is stereoselective.  相似文献   

8.
A method of capillary electrophoresis with contactless conductivity detection has been developed for non‐enantioselective monitoring the anaesthetic ketamine and its main metabolite norketamine. The separation is performed in a 15 μm capillary with an overall length of 31.5 cm and length to detector of 18 cm; inner surface of the capillary is covered with a commercial coating solution to reduce the electroosmotic flow. In an optimised background electrolyte with composition 2 M acetic acid + 1% v/v coating solution under application of a high voltage of 30 kV, the migration time is 97.1 s for ketamine and 95.8 s for norketamine, with an electrophoretic resolution of 1.2. The attained detection limit was 83 ng/mL (0.3 μmol/L) for ketamine and 75 ng/mL (0.3 μmol/L) for norketamine; the number of theoretic plates for separation of an equimolar model mixture with a concentration of 2 μg/mL was 683 500 plates/m for ketamine and 695 400 plates/m for norketamine. Laboratory preparation of rat blood plasma is based on mixing 10 μL of plasma with 30 μL of acidified acetonitrile, followed by centrifugation. A pharmacokinetic study demonstrated an exponential decrease in the plasma concentration of ketamine after intravenous application and much slower kinetics for intraperitoneal application.  相似文献   

9.
CE with multiple isomer sulfated beta-CD as the chiral selector was assessed for the simultaneous analysis of the enantiomers of ketamine and metabolites in extracts of equine plasma and urine. Different lots of the commercial chiral selector provided significant changes in enantiomeric ketamine separability, a fact that can be related to the manufacturing variability. A mixture of two lots was found to provide high-resolution separations and interference-free detection of the enantiomers of ketamine, norketamine, dehydronorketamine, and an incompletely identified hydroxylated metabolite of norketamine in liquid/liquid extracts of the two body fluids. Ketamine, norketamine, and dehydronorketamine could be unambiguously identified via HPLC fractionation of urinary extracts and using LC-MS and LC-MS/MS with 1 mmu mass discrimination. The CE assay was used to characterize the stereoselectivity of the compounds' enantiomers in the samples of five ponies anesthetized with isoflurane in oxygen and treated with intravenous continuous infusion of racemic ketamine. The concentrations of the ketamine enantiomers in plasma are equal, whereas the urinary amount of R-ketamine is larger than that of S-ketamine. Plasma and urine contain higher S- than R-norketamine levels and the mean S-/R-enantiomer ratios of dehydronorketamine in plasma and urine are lower than unity and similar.  相似文献   

10.
A method for the simultaneous determination of amphetamines and ketamines (ketamine, norketamine and dehydronorketamine) in urine samples by gas chromatography/mass spectrometry was developed and validated. Urine samples were extracted with organic solvent and derivatized with trifluoroacetic anhydride (TFAA). The limits of detection and limits of quantification for each analyte were lower than 19 and 30 ng/mL, respectively. Within-day and between-day precisions were within 0.5% and 10.6%, respectively. Biases for three levels of control samples were within -10.6% and +7.8%. The concentration of dehydronorketamine was greater than those of ketamine or norketamine in 19 of 35 ketamine-positive samples. A group of 110 human urine samples previously determined to contain at least one of the target analytes was analyzed using the new method, and excellent agreement was observed with previous results.  相似文献   

11.
《Electrophoresis》2018,39(12):1478-1481
Glucuronidation catalyzed by uridine‐5′‐diphospho‐glucuronosyl‐transferases (UGTs) is the most important reaction in phase II metabolism of drugs and other compounds. O‐glucuronidation is more common than N‐glucuronidation. The anesthetic, analgesic and antidepressive drug ketamine is metabolized in phase I by cytochrome P450 enzymes to norketamine, hydroxynorketamine (HNK) diastereomers and dehydronorketamine (DHNK). Equine urine samples collected two hours after ketamine injection were treated with β‐glucuronidase and analyzed with three enantioselective capillary electrophoresis assays. Concentrations of HNK diastereomers and norketamine were significantly higher in comparison to untreated urine and an increase of ketamine and DHNK levels was found in selected but not all samples. This suggests that O‐glucuronides of HNK and N‐glucuronides of the other compounds are formed in equines. N‐glucuronidation of norketamine was studied in vitro with liver microsomes of different species and the single human enzyme UGT1A4. With equine liver microsomes (ELM) a stereoselective N‐glucuronidation of norketamine was found that compares well to the results obtained with urines collected after ketamine administration. No reaction was observed with canine liver microsomes, human liver microsomes and UGT1A4. Incubation of ketamine and DHNK with ELM did not reveal any glucuronidation. Enantioselective CE is suitable to provide insight into the phase II metabolism of ketamine and its metabolites.  相似文献   

12.
Chung-Yu Chen  Fu-Chou Cheng 《Talanta》2007,72(3):1217-1222
We have developed an analytical method by using liquid chromatography-mass spectrometry (LC-MS) to determine ketamine and its metabolites in urine. The ionization efficiency between two ionization modes (ESI and APCI) of LC-MS was compared to each other. An easy and simple sample preparation of urine samples was made by passing samples through a 0.22 μm PVDF syringe filter. The results indicated that the ionization efficiency of positive APCI mode is better than positive ESI mode for determination of trace ketamines. A wide linearity range of the research is from 5 to 250 ng mL−1 and the detection limits for ketamine, norketamine and dehydronorketamine were 0.95, 0.48 and 0.33 ng mL−1, respectively. The proposed method was tested by analyzing ketamine and metabolites in the urines of volunteers. The concentrations of ketamine, norketamine and dehydronorketamine are ranged of 5.4-131.0, 12.5-74.1 and 22.8-278.9 ng mL−1, respectively and the ketamines concentration profiles in human urine were also determined. The results demonstrate the suitability of liquid chromatography-mass spectrometry approach to analyze trace amount of ketamine and its metabolites in urine.  相似文献   

13.
A robust CE method for the simultaneous determination of the enantiomers of ketamine and norketamine in equine plasma is described. It is based upon liquid-liquid extraction of ketamine and norketamine at alkaline pH from 1 mL plasma followed by analysis of the reconstituted extract by CE in the presence of a pH 2.5 Tris-phosphate buffer containing 10 mg/mL highly sulfated beta-CD as chiral selector. Enantiomer plasma levels between 0.04 and 2.5 microg/mL are shown to provide linear calibration graphs. Intraday and interday precisions evaluated from peak area ratios (n = 5) at the lowest calibrator concentration are < 8 and < 14%, respectively. The LOD for all enantiomers is 0.01 microg/mL. After i.v. bolus administration of 2.2 mg/kg racemic ketamine, the assay is demonstrated to provide reliable data for plasma samples of ponies under isoflurane anesthesia, of ponies premedicated with xylazine, and of one horse that received romifidine, L-methadone, guaifenisine, and isoflurane. In animals not premedicated with xylazine, the ketamine N-demethylation is demonstrated to be enantioselective. The concentrations of the two ketamine enantiomers in plasma are equal whereas S-norketamine is found in a larger amount than R-norketamine. In the group receiving xylazine, data obtained do not reveal this stereoselectivity.  相似文献   

14.
Ketamine and medetomidine are commonly combined to sedate or anaesthetize a wide range of animal species. Despite this, there are few methods for the simultaneous quantitative analysis of the two drugs. This study describes the use of solid‐phase extraction sample preparation followed by liquid chromatography–tandem mass spectrometry for the quantitative analysis of both drugs in ovine plasma. Extraction recovery was 93% for ketamine and 95% for medetomidine. The lowest limit of detection for ketamine was 1 ng/mL and for medetomidine 2 ng/mL, with linearity greater than 0.99 for both. Intra‐day and inter‐day precisions for both drugs were less than 10 and 7%, respectively. Application of the method to samples obtained from pregnant ewes and their fetuses showed placental transfer of the drugs over time such that there was no significant difference in plasma concentration at delivery. In summary, a validated method has been developed for the simultaneous quantification of ketamine and medetomidine in ovine plasma samples which can be used to study the pharmacokinetics of these drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Ketamine is widely used in medicine in combination with several benzodiazepines, including midazolam. The objectives of this study were to develop a novel HPLC‐MS/selected reaction monitoring (SRM) method capable of quantifying ketamine and norketamine using an isotopic dilution strategy in biological matrices and study the formation of norketamine, the principal metabolite of ketamine with and without the presence of midazolam, a well‐known CYP3A substrate. The chromatographic separation was achieved using a Thermo Betasil Phenyl 100 × 2 mm column combined with an isocratic mobile phase composed of acetonitrile, methanol, water and formic acid (60:20:20:0.4) at a flow rate of 300 μL/min. The mass spectrometer was operating in selected reaction monitoring mode and the analytical range was set at 0.05–50 μm . The precision (CV) and accuracy (NOM) observed were 3.9–7.8 and 95.9–111.1% respectively. The initial rate of formation of norketamine was determined using various ketamine concentrations and Km values of 18.4, 13.8 and 30.8 μm for rat, dog and human liver S9 fractions were observed, respectively. The metabolic stability of ketamine on liver S9 fractions was significantly higher in human (T1/2 = 159.4 min) compared with rat (T1/2 = 12.6 min) and dog (T1/2 = 7.3 min) liver S9 fractions. Moreover significantly lower IC50 and Ki values observed in human compared with rat and dog liver S9 fractions. Experiments with cDNA expressed CYP3A enzymes showed that the formation of norketamine is mediated by CYP3A but results suggest an important contribution from other isoenzymes, most likely CYP2C particularly in rat. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
The chiral drug ketamine has long-lasting antidepressant effects with a fast onset and is also suitable to treat patients with therapy-resistant depression. The metabolite hydroxynorketamine (HNK) plays an important role in the antidepressant mechanism of action. Hydroxylation at the cyclohexanone ring occurs at positions 4, 5, and 6 and produces a total of 12 stereoisomers. Among those, the four 6HNK stereoisomers have the strongest antidepressant effects. Capillary electrophoresis with highly sulfated γ-cyclodextrin (CD) as a chiral selector in combination with mass spectrometry (MS) was used to develop a method for the enantioselective analysis of HNK stereoisomers with a special focus on the 6HNK stereoisomers. The partial filling approach was applied in order to avoid contamination of the MS with the chiral selector. Concentration of the chiral selector and the length of the separation zone were optimized. With 5% highly sulfated γ-CD in 20 mM ammonium formate with 10% formic acid and a 75% filling the four 6HNK stereoisomers could be separated with a resolution between 0.79 and 3.17. The method was applied to analyze fractionated equine urine collected after a ketamine infusion and to screen the fractions as well as unfractionated urine for the parent drug ketamine and other metabolites, including norketamine and dehydronorketamine.  相似文献   

17.
The determination of widely used anaesthetic and analgesic drugs in biological fluids is of major clinical importance. Typical methods used for sample preparation employ liquid–liquid extraction protocols which are complex, costly, not handy and not amenable to automation. In the present communication, we report the development of a methodology that employs headspace solid‐phase microextraction (HS‐SPME) for the determination of four anaesthetic (lidocaine, midazolam, diazepam and ketamine) and three analgesic drugs (fentanyl, remifentanyl and codeine) in human urine. Important parameters controlling SPME were studied: selection of SPME fibre, type and amount of salt added, preheating and extraction time, extraction temperature, sample volume and desorption time. GC with nitrogen phosphorus detection (GC‐NPD) facilitates sensitive and selective detection of the anaesthetics. The developed method renders an efficient tool for the precise and sensitive determination of the anaesthetics and analgesics in human urine (RSDs ranged from 7.7 to 12.6%, whereas LODs ranged from 0.01 to 1.5 ng/mL). The method was applied to the determination of the anaesthetics and analgesics in human urine from patients that had undergone coronary by‐pass surgery operations. The proposed protocol can function as an attractive alternative for clinical acute intoxications and medico‐legal cases.  相似文献   

18.
Kwan HY  Thormann W 《Electrophoresis》2011,32(19):2738-2745
Enantioselective CE with sulfated cyclodextrins as chiral selectors was used to determine the CYP3A4-catalyzed N-demethylation kinetics of ketamine to norketamine and its inhibition in the presence of ketoconazole in vitro. Ketamine, a chiral phencyclidine derivative, was incubated with recombinant human CYP3A4 from a baculovirus expression system as racemic mixture and as single enantiomer. Alkaline liquid/liquid extracts of the samples were analyzed with a pH 2.5 buffer comprising 50 mM Tris and phosphoric acid together with either multiple isomer sulfated β-cyclodextrin (10 mg/mL) or highly sulfated γ-cyclodextrin (2%, w/v). Data obtained in the absence of ketoconazole revealed that the N-demethylation occurred stereoselectively with Michaelis-Menten (incubation of racemic ketamine) and Hill (separate incubation of single enantiomers) kinetics. Data generated in the presence of ketoconazole as the inhibitor could best be fitted to a one-site competitive model and inhibition constants were calculated using the equation of Cheng and Prusoff. No stereoselective difference was observed, but inhibition constants for the incubation of racemic ketamine were found to be larger compared with those obtained with the incubation of single ketamine enantiomers.  相似文献   

19.
A gas chromatography/mass spectrometry (GC/MS) method was developed and validated for the determination of common drugs of abuse in Asia. The method was able to simultaneously quantify amphetamines (amphetamine; AP, methamphetamine; MA, methylenedioxy amphetamine; MDA, methylenedioxymeth mphetamine; MDMA, methylenedioxy ethylamphetamine; MDEA), ketamine (ketamine; K, norketamine; NK), and opiates (morphine; MOR, codeine; COD, 6-acetylmorphine; 6-AM) in human hair. Hair samples (25 mg) were washed, cut, and incubated overnight at 25 degrees C in methanol/trifluoroacetic acid (methanol/TFA). The samples were extracted by solid-phase extraction (SPE), derivatized using heptafluorobutyric acid anhydride (HFBA) at 70 degrees C for 30 min, and the derivatives were analyzed by electron ionization (EI) GC/MS in selected ion monitoring mode. Confirmation was accomplished by comparing retention times and the relative abundances of selected ions with those of standards. Deuterated analogs of the analytes were used as internal standards for quantification. Calibration curves for ten analytes were established in the concentration range 0.1-10 ng/mg with high correlation coefficients (r2 > 0.999). The intra-day and inter-day precisions were within 12.1% and 15.8%, respectively. The intra-day and inter-day accuracies were between -8.7% and 10.7%, and between -5.9% and 13.8%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) obtained were 0.03 and 0.05 ng/mg for AP, MA, MDA, MDMA and MDEA; 0.05 and 0.08 ng/mg for K, NK, MOR and COD; and 0.08 and 0.1 ng/mg for 6-AM. The recoveries were above 88.6% for all the compounds, except K and NK which were in the range of 71.7-72.7%. Eight hair samples from known polydrug abusers were examined by this method. These results show that the method is suitable for broad-spectrum drug testing in a single hair specimen.  相似文献   

20.
《Electrophoresis》2018,39(12):1482-1487
Computer simulation was utilized to characterize the electrophoretic processes occurring after reactant mixing in an online assay format used for monitoring the enantioselective N‐demethylation of ketamine to norketamine in the presence of highly sulfated γ‐cyclodextrin (HS‐γ‐CD). The incubated reaction mixture (at pH 7.4 and without chiral selector) is bracketed by a low pH BGE containing 2% HS‐γ‐CD as chiral selector, thereby forming a discontinuous buffer system. Upon power application, simulation provides insight into the formation of moving boundaries and new zones together with the prediction of the behavior of ketamine and norketamine enantiomers. The analytes first migrate cationically in a zone electrophoretic manner until they come in contact with HS‐γ‐CD upon which enantioseparation is initiated. Complexation has a focusing effect and the electrophoretic transport becomes reversed, that is, toward the anode. Simulation revealed that the initial conditions for the chiral separation, including buffer components concentrations, pH, and ionic strength, are different than those in the BGE. As a consequence thereof, the experimentally determined complexation parameters for the BGE were unable to correctly describe the migration behavior of the analytes in this column section. An increase in the input binding constants by a factor of two to four, as a result of the decreased ionic strength, resulted in simulation data that agreed with experimental findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号