首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional (3D) micromachining of photosensitive glass is demonstrated by photochemical reaction using femtosecond (fs) laser for lab-on-a-chip application. True 3D hollow microstructures embedded in the glass are fabricated by fs laser direct writing followed by heat treatment and successive wet etching. The modification mechanism of the photosensitive glass by the fs laser and advantage of this process are discussed. Various microcomponents for the lab-on-a-chip devices such as microfluidics, microvalves, microoptics, microlasers, etc. are fabricated by using this technique and their performance is examined . PACS 42.62.-b; 82.50.Pt; 87.80.Mj  相似文献   

2.
We show that three-dimensional micro-optical components can be embedded in a photosensitive glass by a femtosecond (fs) laser. After exposure to the tightly focused fs laser beam, latent images are written inside the sample. Modified regions are developed by a postbaking process and then preferentially etched away in a 10%-dilute solution of hydrofluoric acid. After this process, hollow internal structures are formed that act as a mirror and a beam splitter. Furthermore, we find that postannealing smoothes the surfaces of the fabricated hollow structures, resulting in great improvement of their optical properties.  相似文献   

3.
In this study, a new process of glass micro-prism structures is investigated by an ultra-fast laser irradiation with chemical etching process. The ultra-fast laser is employed by an all-in-one femtosecond laser (FS-laser) system with the amplifier as an excitation source for patterning the structures. Here, the center wavelength of laser is frequency-doubled to 517 nm. Besides, the repetition rate and pulse width of laser are 100 kHz and 350 fs, respectively. First, the embedded gratings of glass with different pitches can be fabricated using a FS-laser process. Afterwards, the glass samples are placed in the hydrofluoric acid (HF) solution for 15 min to develop structures. Finally, the results of this study demonstrated that the V-cut micro-prisms are successfully formed by controlling etching concentration between intrinsic glass material and modified areas.  相似文献   

4.
We describe the fabrication of microoptical cylindrical and hemispherical lenses vertically embedded in a photosensitive Foturan glass by femtosecond (fs) laser three-dimensional (3D) micromachining. The process is mainly composed of four steps: (1) fs laser scanning in the photosensitive glass to form curved surfaces (spherical and/or cylindrical); (2) postannealing of the sample for modification of the exposed areas; (3) chemical etching of the sample for selective removal of the modified areas; and (4) a second postannealing for smoothening the surfaces of the tiny lenses. We examine the focusing ability of the microoptical lenses using a He-Ne laser beam, showing the great potential of using these microoptical lenses in lab-on-a-chip applications. PACS 42.62.-b; 81.05.Kf; 82.50.Pt  相似文献   

5.
This article reports the fabrication of high-fill-factor plano-convex cylindrical and spherical microlens arrays horizontally and vertically embedded in a photosensitive Foturan glass chip by femtosecond (fs) laser micromachining. The microlens arrays were fabricated by modifying the microstructure of Foturan glass using fs laser direct writing followed by thermal treatment, wet etching, and additional annealing. The focusing ability and image quality of the microlens arrays were examined, showing that the lens arrays not only can focus light well but also provide an imaging capability that holds great potential for lab-on-a-chip applications.  相似文献   

6.
Internal modification of transparent materials such as glass can be carried out using multiphoton absorption induced by a femtosecond (fs) laser. The fs‐laser modification followed by thermal treatment and successive chemical wet etching in a hydrofluoric (HF) acid solution forms three‐dimensional (3D) hollow microstructures embedded in photosensitive glass. This technique is a powerful method for directly fabricating 3D microfluidic structures inside a photosensitive glass microchip. We used fabricated microchips, referred to as a nanoaquarium, for dynamic observations of living microorganisms. In addition, the present technique can also be used to form microoptical components such as micromirrors and microlenses inside the photosensitive glass, since the fabricated structures have optically flat surfaces. The integration of microfluidics and microoptical components in a single glass chip yields biophotonic microchips, in other words, optofluidics, which provide high sensitivity in absorption and fluorescence measurements of small volumes of liquid samples.  相似文献   

7.
We report the selective metallization of photostructurable glass by femtosecond (fs) laser direct writing followed by electroless copper (Cu) plating. It was found that a Cu thin film can be deposited only on the rough surface of glass ablated by the fs laser. The deposited Cu thin film exhibits strong adhesion and excellent electrical properties. A Cu film can even be deposited on the internal wall of a hollow microchannel inside photostructurable glass by the multiphoton absorption of the fs laser. To show the use of this technique for micro-total-analysis-system (μ-TAS) applications, the fabrication of a microheater operating at temperatures up to 200 °C was demonstrated. PACS 81.05.Kf; 85.40.Ls; 87.85.Va  相似文献   

8.
Femtosecond laser application for high capacity optical data storage   总被引:2,自引:0,他引:2  
A femtosecond (fs) laser application for multi-layer optical recording is investigated. Information patterns at different layer depths were written inside a transparent glass substrate due to micro-void formation by fs laser ablation, which causes re-distribution in glass materials and a refractive index modification. The information bits recorded in a single layer can be retrieved clearly without interference from the neighboring layers. A fs laser irradiation of a transparent polymer matrix (doped with fluorescent materials for use as low-cost recording media) is also studied. A fs laser induced photo-chemical reaction changes the chemical properties of the fluorescent materials and records information bits inside the matrix. With an ultra-fast laser as a new light source, 3D optical recording can be available for high capacity data storage up to 1 TB per disc. PACS 82.50.-m; 42.65. Re; 72.70.Jk.  相似文献   

9.
Recently, femtosecond laser direct writing in porous glass is emerging as a powerful technique for building arbitrary 3D hollow micro/nanostructures in bulk glass materials. In this study, we investigate the pulse duration dependence of laser intensity window for inducing a single nanocrack inside porous glass by femtosecond laser direct writing. We find that the window for a single nanocrack increases with the pulse duration, while the roughness of side walls in the nanocracks becomes higher for pulses longer than ~300 fs. When the femtosecond laser pulses of an optimized duration of ~200 fs are chosen, a sufficiently broad range of laser intensity (~44 % of the structuring threshold) for creating a single nanocrack can be obtained, while smooth sidewalls required by nanofluidic applications can still be maintained. The reported results will be beneficial not only for the development of the 3D femtosecond laser micro/nanostructuring techniques, but also for gaining a deeper understanding of the physical mechanism behind the nanograting formation induced by femtosecond laser irradiation in glass and other transparent materials.  相似文献   

10.
We report the three-dimensional (3D) integration of microoptical components such as microlenses, micromirrors and optical waveguides in a single glass chip by femtosecond (fs) laser direct writing. First, two types of microoptical lenses were fabricated inside photosensitive Foturan glass by forming hollow microstructures using fs laser direct writing followed by thermal treatment, successive wet etching and additional annealing. One type of lens is the cylindrical microlens with a curvature radius R of 1.0 mm, and the other is the plano-convex microlens with radius R of 0.75 mm. Subsequently, by the continuous procedure of hollow microstructure fabrication, a micromirror was integrated with the plano-convex microlens in the single glass chip. Further integration of waveguides was performed by internal refractive index modification using fs laser direct writing after the hollow structure fabrication of the microlens and the micromirror. A demonstration of the laser beam transmission in the integrated optical microdevice shows that the 3D integration of waveguides with a micromirror and a microoptical lens in a single glass chip is highly effective for light beam guiding and focusing. PACS 42.62.-b; 81.05.Kf; 42.82.Cr; 82.50.Pt; 42.79.Gn  相似文献   

11.
Microstructures are usually fabricated on the surface of optical sheets to improve the optical characteristics. In this study, a new fabrication process with UV (ultraviolet) laser direct writing method is developed to embed microstructures inside the glass. Then the optical properties of glass such as reflection and refraction indexes can be modified. Single- and multi-layer microstructures are designed and embedded inside glass substrate to modify the optical characteristics. Both luminance and uniformity can be controlled with the embedded microstructures. Thus, the glass with inside pattern can be used as a light guide plate to increase optical performance. First, an optical commercial software, FRED, is applied to design the microstructure configuration. Then, UV laser direct writing with output power 2.5-2.6 W, repetition rate 30 kHz, wave length: 355 nm, and pulse duration 15 ns is used to fabricate the microstructures inside the glass. The effect of dot pattern in the glass such as the dot pitch, the layer gap, and the number of layer on the optical performance is discussed. Machining capacity of UV laser ranges from micron to submicrometer; hence with this ultrafast laser pulse, objectives of various dimensions such as dot, line width, and layers can be easily embedded in the glass by one simple process. In addition, the embedded microstructures can be made with less contamination. Finally, the optical performance of the glasses with various configurations is measured using a Spectra Colorometer (Photo Research PR650) and compared with the simulated results.  相似文献   

12.
Theoretical and experimental investigations have been made of the three-dimensional microchannel fabrication of photostructurable glass by use of a femtosecond (fs) laser. Generally, a microchannel fabricated inside glass by the scanning focal spot of a fs laser perpendicular to the direction of laser propagation assumes an elliptical shape with a cross section of large aspect ratio. We demonstrate that one can greatly reduce the aspect ratio merely by inserting a slit, which is oriented parallel to the laser's scanning direction, before the focusing lens. Computer simulations show that a more symmetrical pattern is obtained in the vicinity of the focal point with the help of such a slit, owing essentially to a diffraction effect.  相似文献   

13.
We demonstrate fabrication of microchips with microfluidic structures for dynamic analysis of living cells using a femtosecond (fs) laser. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in formation of three dimensional (3D) hollow microstructures embedded in photostructurable glass. The embedded microchannel structure enabled us to analyze unique phenomenon of Cryptomonas, which suddenly swims very fast under certain condition. Vector analysis of the driving force for the rapid motion was also carried out by introducing nano-beads into the microchannel, in which Cryptomonas was encapsulated. We also fabricated a microchip for observation of Phormidium moving toward a seedling root, which accelerates growth of the seedling. Using the embedded microchannel in the microchip, observation of Phormidium assemblage to the seedling root was easily carried out. Such microchips with microfluidic structures, referred to as a nano-aquarium, realize the efficient and highly functional observation of living cells.  相似文献   

14.
Atomic-scale structural changes have been observed in the glass network of fused silica after modification by tightly focused 800-nm, 130-fs laser pulses at fluences between 5 and 200 J cm-2. Raman spectroscopy of the modified glass shows an increase in the 490 and 605-cm-1 peaks, indicating an increase in the number of 4- and 3-membered ring structures in the silica network. These results provide evidence that densification of the glass occurs after exposure to fs pulses. Fluorescence spectroscopy of the modified glass shows a broad fluorescence band at 630 nm, indicating the formation of non-bridging oxygen hole centers (NBOHC) by fs pulses. Waveguides that support the fundamental mode at 633 nm have been fabricated inside fused silica by scanning the glass along the fs laser beam axis. The index changes are estimated to be approximately 0.07×10-3. Received: 17 December 2001 / Accepted: 9 July 2002 / Published online: 25 October 2002 RID="*" ID="*"Corresponding author. Fax: +1-925/423-2463, E-mail: dmkrol@ucdavis.edu  相似文献   

15.
Fabrication of surface relief-type gratings in transparent dielectrics, which are hard to machine, has been achieved by a holographic technique using two infrared femtosecond (fs) pulses from a mode-locked Ti:sapphire laser. The present method can be applied for a variety of transparent dielectrics, Al2O3 (sapphire), TiO2, ZrO2, LiNbO3, SiC, ZnO, CdF2, MgO, CaF2 crystals, and SiO2 glass. It is found that the grating formation is due primarily to laser ablation processes. Planar surface relief gratings can be fabricated by colliding two fs laser pulses on the surface of substrates which move at a constant speed, synchronized with the laser repetition rate. Received: 1 March 2000 / Published online: 7 June 2000  相似文献   

16.
By the one-continuous fabrication procedure of hollow microstructures using femtosecond (fs) laser direct writing followed by thermal treatment, successive chemical wet etching and additional annealing, three-dimensional integration of microoptics with microfluidics, i.e., a planoconvex microlens with a microfluidic chamber, in a single Foturan glass chip was achieved. Further integration of an optical waveguide was performed through internal refractive index modification by fs laser direct writing after the fabrication of the microlens and the microchamber. An “all-in-one” microchip that is highly effective for on-chip photonic biosensing can be manufactured by the present technique with easy assembly of each microcomponent and without any cumbersome processes for stacking and joining substrates. Experimental demonstration of photonic biosensing using the integrated microchip has revealed that fluorescence analysis and absorption measurement of liquid samples can be performed with efficiencies enhanced by factors of 8 and 3, respectively.  相似文献   

17.
We report the results of a systematic study of white light generation in different high band-gap optical media (BaF2, acrylic, water and BK-7 glass) using ultrashort (45 fs) laser pulses. We have investigated the influence of different parameters, such as focal position of the incident laser light within the medium, the polarization state of the incident laser radiation and the pulse duration of the incident laser beam on the white light generation. Our results indicate that for intense, ultrashort pulses, the position of physical focus inside the media is crucial in the generation, with high efficiency, of white light spectra over the wavelength range 400–1100 nm. Linearly polarized incident laser light generates white light with higher intensity in the blue region than circularly polarized light. Ultrashort (45 fs) pulses generate a flatter spectrum with higher white light conversion efficiency than longer (300 fs) pulses of the same laser power. We believe that a flat response over a wide range of wavelengths in the continuum may be efficiently compressed for generation of sub-10 fs pulses. PACS 52.38.Hb; 42.65.Jx; 42.65.Tg; 33.80.Wz; 52.35.Mw  相似文献   

18.
Sakakura M  Terazima M 《Optics letters》2004,29(13):1548-1550
The temporal evolution of refractive-index change produced by a tightly focused femtosecond (fs) laser pulse inside a soda-lime glass plate was investigated by use of a transient lens method with subpicosecond time resolution. An oscillating behavior of the light intensity in the central region of the probe beam was observed 0-1500 ps after irradiation of the plate. The oscillation was interpreted in terms of a rapid temperature increase and the ensuing propagation of the pressure wave. This study is to our knowledge the first real-time observation of refractive-index change inside a glass induced by a fs laser pulse.  相似文献   

19.
实验研究了正色散固体介质中的激光脉冲自压缩现象,证明了无需任何外加色散补偿情况下,固体透明介质中的自聚焦传输过程可使高功率飞秒激光脉冲实现时域脉冲压缩,并详细研究了输出脉冲的时域和频域特性随入射脉冲强度的演化规律.实验结果表明脉冲自压缩量随入射脉冲强度的增加呈递增趋势,然而当入射光强增大到足以引起超连续谱及锥形辐射产生时,脉冲时域形状会发生分裂.此外还发现发散光束入射情况下同样可以观察到脉冲自压缩现象. 关键词: 超短激光脉冲 脉冲压缩 非线性传输  相似文献   

20.
Using tightly focused femtosecond laser pulses to irradiate lines in aluminosilicate glass, embedded lines with increased refractive index, which function as optical waveguides were observed. The pulse energy (4.5–11.2 μJ) and writing speed (50–700 μm/s) were shown to affect the resultant optical properties of the waveguides such as the magnitude of refractive index change, core diameter and propagation mode. At pulse energies above 5 μJ, two types of structures were observed, namely an inhomogeneous void-like structure and a cross-sectional crack-like structure. These structures were found to affect significantly the resultant waveguiding properties of the irradiated lines. Using pulse energy of 5 μJ or below, single mode waveguides were fabricated. Raman spectroscopy showed that the fs laser pulses generated structural changes to the aluminosilicate glass. The fabrication of a 1×4 splitter was also demonstrated. PACS 42.62.-b; 42.82.-m; 81.05.Kf  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号