首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the temperature dependence of bottomonium for temperatures in the range 0.4T(c) < T < 2.1T(c), using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for Nf = 2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χb propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T ? 2T(c).  相似文献   

2.
We show that the strong-coupling physics inherent to the insulating Mott state in 2D leads to a jump in the chemical potential upon doping and the emergence of a pseudogap in the single-particle spectrum below a characteristic temperature. The pseudogap arises because any singly occupied site not immediately neighboring a hole experiences a maximum energy barrier for transport equal to t(2)/U, t the nearest-neighbor hopping integral and U the on-site repulsion. The resultant pseudogap cannot vanish before each lattice site, on average, has at least one hole as a near neighbor. The ubiquity of this effect in all doped Mott insulators suggests that the pseudogap in the cuprates has a simple origin.  相似文献   

3.
The charge transport in a variety of herringbone-stacked organic molecular semiconductors is investigated in the temperature range from 10 to 550 K. A crossover from coherent bandlike charge transport with mobilities up to several thousand cm (2)/V s at low temperature to an incoherent hopping motion at high temperatures is observed. This is attributed to the localization of the charge carrier due to increased electron-phonon interaction and, finally, the formation of a lattice polaron.  相似文献   

4.
Non-equilibrium carrier distributions were obtained in CdS at various temperatures from 77 to 400K. A study is made of the influence of the lattice temperature on the carrier temperature. It is found that the higher the lattice temperature the lower is the difference between carrier and lattice temperatures, though carriers are always thermalized among themselves. The results can be accounted for by carrier relaxation through optical polar phonon emission.  相似文献   

5.
We describe the approach of the superconducting state as a sequence of crossover phenomena. As the temperature is decreased, uncorrelated pairing of the electrons leads to the opening of a pseudogap at T(*)(F). Upon further lowering the temperature those electron pairs acquire well behaved itinerant features at T(*)(B), leading to partial Meissner screening and Drude-type behavior of the optical conductivity. Further decrease of the temperature leads to their condensation and superconductivity at T(c). The analysis is done on the basis of the boson-fermion model in the crossover regime between 2D and 3D.  相似文献   

6.
《Physics Reports》2001,349(1):1-123
This article reviews the current status of precursor superconducting phase fluctuations as a possible mechanism for pseudogap formation in high-temperature superconductors. In particular we compare this approach which relies on the two-dimensional nature of the superconductivity to the often used T-matrix approach. Starting from simple pairing Hamiltonians we present a broad pedagogical introduction to the BCS–Bose crossover problem. The finite temperature extension of these models naturally leads to a discussion of the Berezinskii–Kosterlitz–Thouless superconducting transition and the related phase diagram including the effects of quantum phase fluctuations and impurities. We stress the differences between simple Bose–BCS crossover theories and the current approach where one can have a large pseudogap region even at high carrier density where the Fermi surface is well-defined. Green's function and its associated spectral function, which explicitly show non-Fermi liquid behavior, is constructed in the presence of vortices. Finally different mechanisms including quasi-particle–vortex and vortex–vortex interactions for the filling of the gap above Tc are considered.  相似文献   

7.
Using interlayer tunneling spectroscopy we studied anomalous magnetoresistance state in graphite in pulsed magnetic fields up to 55 T. At low temperatures we found the opening of a pseudogap on tunneling spectra at fields above 17 T. The gap value is saturated above 30 T to 2Δ=70 mV. The gap feature is gradually smearing out with temperature but is still observed up to temperatures of ∼250 K. We discuss possible origin of the pseudogap as being related with the field induced charge density wave (CDW) state in analogy with that recently observed in NbSe3 above Peierls transition temperature.  相似文献   

8.
We study the origin of the cooperative nature of spin crossover (SC) between low-spin and high-spin (HS) states from the viewpoint of elastic interactions among molecules. As the size of each molecule changes depending on its spin state, the elastic interaction among the lattice distortions provides the cooperative interaction of the spin states. We develop a simple model of SC with intra and intermolecular potentials which accounts for the elastic interaction including the effect of the inhomogeneity of the spin states and apply constant temperature molecular dynamics based on the Nosé-Hoover formalism. We demonstrate that, with increase of the strength of the intermolecular interactions, the temperature dependence of the HS component changes from a gradual crossover to a first-order transition.  相似文献   

9.
Ultrafast thermomechanical responses of silicon thin films due to ultrashort-pulsed laser irradiation were investigated using an atomic-level hybrid method coupling the molecular dynamics and the ultrafast two-step energy transport model. The dynamic reflectivity and absorption were considered, and the effects of laser fluence and pulse duration on the thermomechanical response were studied. It was found that both the carrier temperature and number density rapidly increase to their maximum while the lattice temperature rises at a much slower rate. The ultrafast laser heating could induce a strong stress wave in the film, with the maximum compressive and tensile stress occurring near the front and back surfaces, respectively. For laser pulses of the same duration, the higher the laser fluence is, the higher the carrier temperature and density and lattice temperature are induced. For the same laser fluence, a longer pulse generally produces lower carrier density and temperatures and weaker stress shock strength. However, for the fluence of 0.2 J/cm2, the lowest lattice temperature was simulated for a 100-fs pulse compared to the 1-ps and 5-ps pulses, due to the increase of reflectivity by high carrier density. It is also shown that the optical properties as functions of lattice temperature usually employed are not suited for modeling ultrafast laser interactions with silicon materials.  相似文献   

10.
We measure the spin lattice relaxation of the planar In(1) nuclei in the CeMIn5 materials, extract quantitative information about the low energy spin dynamics of the lattice of Ce moments in both CeRhIn5 and CeCoIn5, and identify a crossover in the normal state. Above a temperature T(*) the Ce lattice exhibits "Kondo gas" behavior characterized by local fluctuations of independently screened moments; below T(*) both systems exhibit a "Kondo liquid" regime in which interactions between the local moments contribute to the spin dynamics. Both the antiferromagnetic and superconducting ground states in these systems emerge from the Kondo liquid regime. Our analysis provides strong evidence for quantum criticality in CeCoIn5.  相似文献   

11.
One of the leading issues in high-T(c) superconductors is the origin of the pseudogap phase in underdoped cuprates. Using polarized elastic neutron diffraction, we identify a novel magnetic order in the YB(2)Cu(3)O(6+) system. The observed magnetic order preserves translational symmetry of the lattice as proposed for orbital moments in the circulating current theory of the pseudogap state. To date, it is the first direct evidence of a hidden order parameter characterizing the pseudogap phase in high-T(c) cuprates.  相似文献   

12.
We investigate the relaxation dynamics of nonequilibrium carriers in organic conductors κ-(BEDT-TTF)(2)Cu[N(CN)(2)]X (X=Br and Cl) using ultrafast time-resolved optical spectroscopy. The dynamics for both salts show similar temperature dependences, which is well characterized by the carrier relaxation across the pseudogap (PG) of the magnitude Δ(PG) ≈ 16 meV for Br salt and 7.0 meV for Cl salt. On the other hand, only the Br salt shows an abrupt increase of the decay time at low temperature, indicating an additional decay component associated with the superconducting (SC) gap below T(c). The fluence dependent dynamics at low temperature evidences the superposition of the SC component onto the PG component. These results indicate a metallic-insulating phase separation in the Br salt triggered by photoexcited nonequilibrium carriers.  相似文献   

13.
The pseudogap behavior of spectral function A(k, ω) of charge carriers is considered in the weak doping regime for a 2D Kondo lattice with a strong spin-hole antiferromagnetic interaction. The scattering of carriers is described in terms of a local polaron according to the irreducible Green functions. The behavior of the carrier spectrum in the nodal and antinodal domains is considered. The resultant value of the pseudogap is in conformity with experimental data on photoemission with angular resolution.  相似文献   

14.
We review the current methods and results of lattice simulations of quantum chromodynamics at nonzero temperatures and densities. The review is intended to introduce the subject to interested nonspecialists and beginners. It includes a brief overview of lattice gauge theory, a discussion of the determination of the crossover temperature, the QCD phase diagram at zero and nonzero densities, the equation of state, some in-medium properties of hadrons including charmonium, and some plasma transport coefficients.  相似文献   

15.
We determine the magnetic-field dependence of the pseudogap closing temperature T* within a precursor superconductivity scenario. Detailed calculations with an anisotropic lattice model with d-wave superconductivity account for a recently determined experimental relation in BSCCO between the pseudogap closing field and the pseudogap temperature at zero field, as well as for the weak initial dependence of T* at low fields. Our results indicate that the available experimental data are fully compatible with a superconducting origin of the pseudogap in cuprate superconductors.  相似文献   

16.
Interlayer tunneling resistivity is used to probe the low-energy density-of-states (DOS) depletion due to the pseudogap in the normal state of Bi2Sr2CaCu2O8+y. Measurements up to 60 T reveal that a field that restores DOS to its ungapped state shows strikingly different temperature and doping dependencies from the characteristic fields of the superconducting state. The pseudogap closing field and the pseudogap temperature T small star, filled evaluated independently are related through a simple Zeeman energy scaling. These findings indicate a predominant role of spins over the orbital effects in the formation of the pseudogap.  相似文献   

17.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determined only by amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field temperature T0 has a similar doping dependence as the pseudogap temperature T(*), whereas the pseudogap energy scale is given by the average amplitude above T(c).  相似文献   

18.
In-plane angular magnetoresistivity Deltarho(anis)(ab) measurements were made on Y(1-x)Pr(x)Ba(2)Cu(3)O(7-delta) single crystals in the pseudogap region. For x>/=0.2 single crystals, Deltarho(anis)(ab)(theta) displays a deviation from the typical quasiparticle contribution (proportional, sin((2)theta) for temperatures smaller than a certain value T(phi) in the pseudogap region. This deviation is consistent with a flux-flow type contribution to angular magnetoresistivity, indicating the presence of vortexlike excitations above the zero-field critical temperature in the pseudogap region.  相似文献   

19.
《中国物理 B》2021,30(6):67401-067401
We consider the superconducting properties of Lieb lattice, which produces a flat-band energy spectrum in the normal state under the strong electron–electron correlation. Firstly, we show the hole-doping dependent superconducting order amplitude with various electron–electron interaction strengths in the zero-temperature limit. Secondly, we obtain the superfluid weight and Berezinskii–Kosterlitz–Thouless(BKT) transition temperature with a lightly doping level. The large ratio between the gap-opening temperature and BKT transition temperature shows similar behavior to the pseudogap state in high-T_c superconductors. The BKT transition temperature versus doping level exhibits a dome-like shape in resemblance to the superconducting dome observed in the high-T_c superconductors. However, unlike the exponential dependence of T_c on the electron–electron interaction strength in the conventional high-T_c superconductors, the BKT transition temperature for a flat band system depends linearly on the electron–electron interaction strength. We also show the doping-dependent superconductivity on a lattice with the staggered hoping parameter in the end. Our predictions are amenable to verification in the ultracold atoms experiment and promote the understanding of the anomalous behavior of the superfluid weight in the high-T_c superconductors.  相似文献   

20.
We report magnetization measurements in the normal state of the high transition temperature (high-Tc) superconductor La2-xSrxCuO4. A magnetic order in the form of hysteresis in the low-field magnetization is observed at temperatures well above Tc. The doping (x) dependence of the onset and strength of this order follows Tc(x) and falls within the pseudogap regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号