首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
曾贵华  余玮  沈百飞  徐至展 《物理学报》1997,46(6):1131-1136
研究了超短脉冲强激光在等离子体通道中传播时产生的自生磁场.利用相对论动量方程和泊松方程及安培定律得出自生磁场的一个基本公式,在此基础上解析并数值研究了通道中产生的自生磁场的特性和结构,初步探讨了超短脉冲强激光在等离子体中传播时形成的排空效应对自生磁场的影响,并分析了产生自生磁场的机制 关键词:  相似文献   

2.
The theory of light scattering in plasmas containing a magnetic field yields the special case of modulated scattering spectra. The modulation frequency is governed by the field in the plasma and is equal to the electron cyclotron frequency. In this investigation magnetic fields in a plasma were determined by a laser scattering experiment. The experimental data were: electron densityn e=1016cm?3, electron temperatureT e=3.2 eV, scattering angle θ=90 °, scattering parameter α=0.6, and a maximum field in the plasma of 125 kG. The spectrum measured at the maximum magnetic field was modulated with 3.6 × 1011 Hz. In scattering experiments with a field reduced by about 20% the observed modulation frequency was 2.8 × 1011 Hz. A thermal spectrum with a smooth profile was found when no field was present in the plasma. Applying the theory of cyclotron modulated spectra one obtains from the scattering experiment magnetic fields of 128, 100, and 0 kG. Within the experimental accuracy these values agree well with the fields determined by means of magnetic probes. Other possible interpretations of the measured deviations from thermal spectra (modulation with the plasma frequency or additional cold electron components in the plasma) are discussed, but they afford no explanation. This experiment has domonstrated that magnetic fields in plasmas can be measured locally and almost without disturbance by means of light scattering.  相似文献   

3.
We present the first fully kinetic Vlasov-Fokker-Planck simulations of nanosecond laser-plasma interactions including self-consistent magnetic fields and hydrodynamic plasma expansion. For the largest magnetic fields externally applied to long-pulse laser-gas-jet experiments (12 T) a significant degree of cavitation of the B field (>40%) will be shown to occur from the laser-heated region in under half a nanosecond. This is due to the Nernst effect and leads to the reemergence of nonlocality even if the initial value of the magnetic field strength is sufficient to localize the transport.  相似文献   

4.
The motion of a relativistic electron is analyzed in the field configuration consisting of a circular wiggler magnetic field, an axial magnetic field, and the equilibrium self-electric and self-magnetic fields produced by the non-neutral electron ring. By generating Poincare surface-of-section maps, it is shown that when the equilibrium self-fields is strong enough, the electron motions become chaotic. Although the realistic circular wiggler magnetic field destroys the integrability of the electron motion as the equilibrium self-fields do, the role the latter plays to make the motions become chaotic is stronger than the former. In addition, the axial magnetic field can restrain the occurrence of the chaoticity.  相似文献   

5.
The analytical studies show that the application of a small solenoidal magnetic field can drastically change the self-magnetic and self-electric fields of the beam pulse propagating in a background plasma. Theory predicts that when omega_{ce} approximately omega_{pe}beta_{b}, where omega_{ce} is the electron gyrofrequency, omega_{pe} is the electron plasma frequency, and beta_{b} is the ion-beam velocity relative to the speed of light, there is a sizable enhancement of the self-electric and self-magnetic fields due to the dynamo effect. Furthermore, the combined ion-beam-plasma system acts as a paramagnetic medium; i.e., the solenoidal magnetic field inside the beam pulse is enhanced.  相似文献   

6.
张蕾  董全力  王首钧  盛政明  张杰 《中国物理 B》2010,19(7):78701-078701
Quasistatic magnetic fields generated by nonrelativistic intense linearly polarized (LP) and circularly polarized (CP) laser pulses in an initially uniform underdense plasma in the collision-dominated limit are investigated analytically. Using a selfconsistent analytical model, we perform a detailed derivation of quasistatic magnetic fields in the laser pulse envelope in the collision-dominated limit to obtain exact analytical expressions for magnetic fields and discuss the dependence of magnetic fields on laser and plasma parameters. Equations for quasistatic magnetic fields including both axial component Bz and the azimuthal one Bθ are derived simultaneously from such a selfconsistent model. The dependence of quasistatic magnetic field on incident laser intensity, transverse focused radius of laser pulse, electron density and electron temperature is discussed.  相似文献   

7.
The cylindrical column plasma of a neon dc glow discharge under the influence of a weak longitudinal magnetic field is studied. An extended, fully self-consistent model of the column plasma has been used to determine the kinetic quantities of electrons, ions and excited atoms, the radial space charge field, and the axial electric field for given discharge conditions. The model includes a nonlocal kinetic treatment of the electrons by solving their spatially inhomogeneous kinetic equation, taking into account the radial space charge field and the axial magnetic field. The treatment is based on the two-term expansion of the velocity distribution and comprises the determination of its isotropic and anisotropic components in the axial, radial, and azimuthal direction. A transition from a distinctly nonlocal kinetic behavior of the electrons in the magnetic-field-free case to an almost local kinetic behavior has been found by increasing the magnetic field. The establishment of the electron cyclotron motion around the column axis increasingly restricts the radial electron energy transport and reduces the radial ambipolar current. The complex interaction of these transport phenomena with the alterations in the charge carrier production leads finally to a specific variation of the electric field components. The axial field increases by applying weak magnetic fields, however, decreases with increasingly higher magnetic fields. At higher magnetic fields, the radial space-charge field is considerably reduced  相似文献   

8.
Second harmonic radiation in the form of an electro-optic shock is produced in the blowout regime of a laser wakefield in a plasma. The shock is produced by the interaction between the laser field and the electron sheath surrounding the electron cavitation region. Because the sheath is thin, phase matching is unimportant, and the radiated energy grows secularly with the interaction length. The angle of emission is given by the Cherenkov angle associated with the ratio of the second harmonic phase velocity to the fundamental phase velocity. The shock formation is investigated in three dimensions via analysis and particle-in-cell simulations.  相似文献   

9.
强激光照射金属线圈后,会在打靶点附近的背景等离子体中诱发冷电子的回流,在金属丝内形成强电流源,从而产生强磁场.本文利用神光II高功率激光器产生的强激光照射金属丝靶,产生了围绕金属丝的环形强磁场.利用B-dot对局域磁感应强度进行了测量,根据测量结果,结合三维模拟程序,反演得到磁场的空间分布.再利用强激光与CH平面靶相互作用产生的超音速等离子体撞击该金属丝,产生了弓激波.通过光学成像手段研究了磁场对冲击波的影响,发现磁场使得弓激波的轮廓变得不明显并且张角变大.同时,通过实验室天体物理定标率,将金属丝表面等离子参数变换到相应的天体参数中,结果证明利用该实验方法可以在实验室中产生类似太阳风的磁化等离子体.  相似文献   

10.
胡明  万树德  钟雷  刘昊  汪海 《物理学报》2012,61(4):45201-045201
本文利用单探针诊断等离子体参数来研究自行设计的磁控直流辉光等离子体实验装置的放电特性, 从而得出电子密度与气体压强、电子密度分布与磁场位型以及磁场强度等的关系. 另外, 用有限元的方法对线圈通电产生的磁场进行数值计算, 模拟出不同接线方式的两种磁场位型分布. 通过实验得出这两种不同的位型的磁场均对等离子体的状态有一定的“控制”作用, 而且这种“控制”作用与现有理论相符合.  相似文献   

11.
On the basis of the time-dependent electron Boltzmann equation the temporal relaxation of the electrons in the presence of electric and magnetic fields in weakly ionized, collision dominated plasmas has been studied. The relaxation process is treated by using a strict time-dependent two-term approximation of the velocity distribution function expansion in spherical harmonics. A new technique for solving the time-dependent electron kinetic equation in this two-term approximation for arbitrary angles between the electric and magnetic fields has been developed and the main aspects of the efficient solution method are presented. Using this new approach and starting from steady-state plasmas under the action of time-independent electric fields only, the impact of superimposed DC magnetic fields on the electron relaxation is analyzed with regard to the control of a neon plasma. The investigations reveal an important effect of the magnetic field on the temporal relaxation process. In particular, it has been found that the relaxation time of the electron component with respect to the establishment of steady-state can be enlarged by some orders of magnitude when increasing the magnetic field strength  相似文献   

12.
Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.  相似文献   

13.
孟令辉  任洪波  刘建晓 《物理学报》2018,67(17):174101-174101
通过解析方法研究了高温等离子体的太赫兹波传输特性.研究发现,高温等离子体对太赫兹波高频频段透过率较高,表现为通带;对低频频段透过率较低,表现为阻带.这与冷等离子体中电磁波的传输特性是一致的.但其透射率还受到温度与磁场的影响,当改变高温等离子体的电子温度与磁场时,在阻带内会产生一尖锐的透射峰.这种现象在冷等离子体模型中从来没有出现过.本文主要对电子温度和外加磁场两个影响因素进行讨论.研究发现,禁带内出现的透射峰频率受磁场影响,而峰值幅度受温度影响.计算得到了不同外加磁场条件下产生高透过率(透射率约为1)时的电子温度.基于该结果进一步研究了透射峰出现的规律,并通过曲线拟合的方法得到了透射峰频率所遵循的计算公式.数值结果表明透射峰频率与外磁场之间为正比例函数关系,而峰值电子温度取值与外磁场的关系表现为指数规律.最后对拟合得到的方程采用时域有限差分法进行了验证,数值结果与解析解符合较好,证明了该研究的正确性.  相似文献   

14.
In circularly polarized light the spins of the photons are aligned. When a short intense pulse of circularly polarized laser light is absorbed by a plasma, a torque is delivered initially to the electron species, resulting primarily in an opposing torque from an induced azimuthal electric field. This electric field, in general, has a curl and leads to the generation of an axial magnetic field. It also is the main means for transferring angular momentum to the ions. The time-dependent magnetic field has a magnitude proportional to the transverse gradient of the absorbed intensity but inversely proportional to the electron density, in contrast to earlier theories of the inverse Faraday effect.  相似文献   

15.
We study experimentally the effect of ionization self-channeling of waves at the whistler frequencies in a nonuniform magnetic field. It is shown that the formed plasma nonuniformity localizes the radiation from a short high-frequency source inside a discharge channel stretched along an external magnetic field. We found a possibility to control the parameters of the formed plasma-wave channel as well as the dispersion characteristics and structure of wave fields in wide limits by varying the magnetic field in a specified spatial region. We propose a method for the formation of a plasma resonator and test this method in the laboratory experiment. The spatial plasma and field distributions in this resonator are similar to those along a geomagnetic field tube of the magnetospheric resonator. We reveal the plasma instability in such a resonator in the vicinity of the frequency of electron bounce oscillations between magnetic mirrors.  相似文献   

16.
Linear and nonlinear propagation of magnetic electron drift vortex waves in a nonuniform magnetic field is investigated by means of a generalized adiabatic law which takes into account the effect of strong fields and reduces in the appropriate limits to several well known energy conservation equations in a collisionless plasma. In the linear limit, an instability is shown to exist, whereas in the nonlinear regime, steady-state dipole vortices associated with the electron drift vortex waves may appear. The anomalous electron energy transport associated with the unstable magnetic electron drift vortex waves is investigated by means of a quasilinear theory.  相似文献   

17.
A capacitively-coupled RF argon discharge at a pressure of 10 mTorr with a plate separation of 7.5 cm has been studied both experimentally and using a one-dimensional particle in cell simulation with Monte Carlo collisions. A magnetic field of 0 to 60 G is applied in the direction parallel to the capacitor plates. In the simulation it was found that as the magnetic field was increased such that the electron cyclotron orbit radius of the hot electrons became smaller than of the order of the discharge length, the electron heating in the bulk of the discharge increased. The dominant electron heating mechanism was observed to change from a stochastic sheath to a bulk ohmic electron heating mode, with a variation of field from a to 10 G. This was accompanied by a drop in the plasma density at small magnetic fields, which was also observed experimentally. At higher magnetic fields the plasma density was found to increase, A detailed discussion of the simulation results is presented drawing comparisons with the experimental results, with which there is good agreement, and a simple magnetohydrodynamic model for the bulk heating  相似文献   

18.
Approximate analytic expressions for calculating the electron density in both steady and unsteady plasmas produced by pulsed electron beams are derived and proved to agree well with numerical calculations. It is shown that the algorithm for calculating the parameters of a nonequilibrium plasma in the channel of an MHD plasma generator depends on the type of generator. The effect of the magnetic field strength on the electron density and electric conductivity of the air plasma produced by an electron beam in the channel of a Faraday MHD generator is investigated. The influence of the parameters of the flow and ionizer on the efficiency of an MHD generator with a nonequilibrium conductivity is analyzed.  相似文献   

19.
A manifestation of retardation effects, which were predicted theoretically more than 35 years ago, is revealed for the first time in the plasma excitation spectrum of a two-dimensional electron system with a high electron mobility. It is shown that a significant decrease in the resonant plasma frequency due to a hybridization of the plasma and light modes is observed in zero magnetic field. An unusual dependence of the frequency of the hybrid cyclotron-plasmon mode on the magnetic field has been observed in a perpendicular magnetic field. The experimental results are in good quantitative agreement with the theory.  相似文献   

20.
The effect of a longitudinal magnetic field on the linear wake fields excited by a relativistic electron bunch in a cold homogeneous plasma is considered. The obtained results prove that the presence of an external magnetic field leads to a dependence of the wake wavelength on the transverse coordinate, to a change in the wave amplitude with increasing distance from the bunch, and to the emergence of anharmonicity. It is found that a strong magnetic field reduces the wave amplitude significantly for narrow bunches and changes the amplitude insignificantly for broad bunches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号