首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, we study the effects of the number of sites, quantum ring radius and potential well depth on the energy levels, persistent current, magnetic susceptibility and density of states (DOS) of a quantum ring with a quantum well within its circumstance in a magnetic flux perpendicular to its plane. We show that, for small radius quantum ring systems, there are periodic local gaps along the magnetic flux axis in the DOS plots and along the axis ‘energy’. For large radius quantum ring systems, a uniform gap along the energy axis exists and along the phi axis nothing changes. In quantum rings with a quantum well in their circumstance, by using the large confining potential, we can create uniform gaps in the Energy–phi plane. The energy eigenvalues, persistent current and magnetic susceptibility decrease by increasing the confining potential. A quantum ring even with a very small confining potential in its circumstance can sensibly decrease the persistent current and magnetic susceptibility, although it may do not change the energy eigenvalues and DOS maximum considerably. Thus, by using the abovementioned parameters, we are able to tune the DOS, persistent current, magnetic susceptibility and energy levels, desirably.  相似文献   

2.
Calculations of electronic structures about the semiconductor quantum dot and the semiconductor quantum ring are presented in this paper. To reduce the calculation costs, for the quantum dot and the quantum ring, their simplified axially symmetric shapes are utilized in our analysis. The energy dependent effective mass is taken into account in solving the Schr?dinger equations in the single band effective mass approximation. The calculated results show that the energy dependent effective mass should be considered only for relatively small volume quantum dots or small quantum rings. For large size quantum materials, both the energy dependent effective mass and the parabolic effective mass can give the same results. The energy states and the effective masses of the quantum dot and the quantum ring as a function of geometric parameters are also discussed in detail.  相似文献   

3.
We analyze the response of a complex quantum-mechanical system (e.g., a quantum dot) to a time-dependent perturbation phi(t). Assuming the dot to be described by random-matrix theory for the Gaussian orthogonal ensemble, we find the quantum correction to the energy absorption rate as a function of the dephasing time t(phi). If phi(t) is a sum of d harmonics with incommensurate frequencies, the correction behaves similarly to that for the conductivity deltasigma(d)(t(phi)) in the d-dimensional Anderson model of the orthogonal symmetry class. For a generic periodic perturbation, the leading quantum correction is absent as in the systems of the unitary symmetry class, unless phi(-t+tau)=phi(t+tau) for some tau, which falls into the quasi-1D orthogonal universality class.  相似文献   

4.
We have studied micro-photoluminescence spectra of a self-assembled single GaAs quantum dot under 8 K. With strong pulsed excitation, the micro-photoluminescence spectrum shows bright emission lines originated from an exciton, a positively charged exciton, and a biexciton, together with weak lower energy emissions reflecting multi-excitonic structures with more carriers. We have identified the origins of these weak emission lines, and showed the existence of charged biexciton states, through single photon correlation measurements and excitation power dependence of the photoluminescence intensity. In addition, investigating the radiative recombination process of the charged biexciton, we have determined the electron–hole exchange energy in the GaAs quantum dot.  相似文献   

5.
The characteristics of short optical pulse four-wave mixing (FWM) and amplification in quantum dot semiconductor optical amplifiers (QD-SOAs) are investigated taken into account the effect of the multi-discrete QD energy levels. Different saturation and recovery response for the electron and hole states are observed, which is attributed to different energy spacing between the energy states. We found that the 3 dB saturation energy of QD-SOA depends on the pulse width for short input pulses. Also, the optimum time delay between the probe and pump pulses in QD-SOAs, which provides maximum FWM efficiency in QD-SOAs, is smaller than the optimum delay in quantum well SOA.  相似文献   

6.
The magnetic field-dependent heavy hole excitonic states in a strained Ga0.2In0.8As/GaAs quantum dot are investigated by taking into account the anisotropy,non-parabolicity of the conduction band,and the geometrical confinement.The strained quantum dot is considered as a parabolic dot of InAs embedded in a GaAs barrier material.The dependence of the effective excitonic g-factor as a function of dot radius and the magnetic field strength is numerically measured.The interband optical transition energy as a function of geometrical confinement is computed in the presence of a magnetic field.The magnetic field-dependent oscillator strength of interband transition under the geometrical confinement is studied.The exchange enhancements as a function of dot radius are observed for various magnetic field strengths in a strained Ga0.2In0.8As/GaAs quantum dot.Heavy hole excitonic absorption spectra,the changes in refractive index,and the third-order susceptibility of third-order harmonic generation are investigated in the Ga0.2In0.8As/GaAs quantum dot.The result shows that the effect of magnetic field strength is more strongly dependent on the nonlinear optical property in a low-dimensional semiconductor system.  相似文献   

7.
The emergence of half-integer filling-factor states, such as upsilon=5/2 and 7/2, is found in quantum dots by using numerical many-electron methods. These states have interesting similarities and differences with their counterstates found in the two-dimensional electron gas. The upsilon=1/2 states in quantum dots are shown to have high overlaps with the composite fermion states. The lower overlap of the Pfaffian state indicates that electrons might not be paired in quantum dot geometry. The predicted upsilon=5/2 state has a high spin polarization, which may have an impact on the spin transport through quantum dot devices.  相似文献   

8.
By embedding a layer of self-assembled quantum dots into a field-effect structure, we are able to control the exciton charge in a single dot. We present the results of photoluminescence experiments as a function of both charge and magnetic field. The results demonstrate a hierarchy of energy scales determined by quantization, the direct Coulomb interaction, the electron–electron exchange interaction, and the electron–hole exchange interaction. For excitons up to the triply charged exciton, the behavior can be understood from a model assuming discrete levels within the quantum dot. For the triply charged exciton, this is no longer the case. In a magnetic field, we discover a coherent interaction with the continuum states, the Landau levels associated with the wetting layer.  相似文献   

9.
王艳文  吴花蕊 《物理学报》2012,61(10):106102-106102
在有效质量近似的框架下,运用变分方法研究闪锌矿GaN/AlGaN量子点中的激子态及相关光学性质,探讨电子与空穴在量子点中的三维空间受限和有限势效应.数值计算结果显示,当量子点的尺寸增加时, 量子尺寸效应对电子和空穴的影响减弱,基态激子结合能和带间光跃迁能也都降低;而当该量子点中垒层AlGaN中 Al含量增加时,提高了量子点对电子和空穴的束缚作用, 同时基态激子结合能和带间光跃迁能都增加.数值的理论结果与相关实验测量结果一致.  相似文献   

10.
In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (t Si) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter t Si, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.  相似文献   

11.
A theory of quasi-stationary states and lifetimes of electrons, holes, and excitons in an open cylindrical semiconductor quantum wire containing a quantum dot surrounded by two identical antidots (with potential barriers of finite height) is developed using the scattering matrix method. The energy spectra and lifetimes of electrons, holes, and excitons in a β-HgS/β-CdS/β-HgS/β-CdS/β-HgS nanoheterosystem are calculated and analyzed as functions of the geometric parameters of the quantum dot involved. It is demonstrated that an increase in the height of the quantum dot leads to a decrease in the energy of quasi-stationary exciton states of the Breit-Wigner type and to an increase in their lifetimes. The lifetime of exciton states is long enough for these states to be observed in the experiment.  相似文献   

12.
According to random-matrix theory, interference effects in the conductance of a ballistic chaotic quantum dot should vanish proportional to (tau(phi)/tau(D))(p) when the dephasing time tau(phi) becomes small compared to the mean dwell time tau(D). Aleiner and Larkin have predicted that the power law crosses over to an exponential suppression proportional to exp((-tau(E)/tau(phi)) when tau(phi) drops below the Ehrenfest time tau(E). We report the first observation of this crossover in a computer simulation of universal conductance fluctuations. Their theory also predicts an exponential suppression proportional to exp((-tau(E)/tau(D)) in the absence of dephasing--which is not observed. We show that the effective random-matrix theory proposed previously for quantum dots without dephasing explains both observations.  相似文献   

13.
We report resonant tunneling experiments in a quantum antidot sample in the integer quantum Hall regime. In particular, we have measured the temperature T dependence of the peak value of a conductance peak on the i = 2 plateau, where there are two peaks per magnetic flux quantum straight phi(0). We observe a T-1 dependence as expected when tunneling through only one electron state is possible. This result is incompatible with tunneling through a compressible ring of several degenerate states. We also observe, for the first time, three conductance peaks per straight phi(0) on the i = 3 plateau.  相似文献   

14.
Mean-field evolution equations for the exciton and photon populations and polarizations (Bloch–Lamb equations) are written and numerically solved in order to describe the dynamics of electronic states in a quantum dot coupled to the photon field of a microcavity. The equations account for phase space filling effects and Coulomb interactions among carriers, and include also (in a phenomenological way) incoherent pumping of the quantum dot, photon losses through the microcavity mirrors, and electron–hole population decay due to spontaneous emission of the dot. When the dot may support more than one electron–hole pair, asymptotic oscillatory states, with periods between 0.5 and 1.5 ps, are found almost for any values of the system parameters.  相似文献   

15.
In this paper we analyze the changes experienced by the energy spectra of a confined exciton in type II semiconductor quantum dots, considering the quantum dot as a possible functional part that, in the future devices, can be applied in spintronics, optoelectronics, and quantum information technologies. We studied the lowest energy states of an exciton (X) confined in type II InP/GaInP self-assembled quantum dot (SAQDs), with axial symmetry in the presence of a uniformly applied magnetic field in the growth direction. In our model, it is considered that the electron is located within the point of InP and the hole is in the GaInP barrier. The solution of the Schrödinger equation for this system is obtained by a variational separation process of variables in the adiabatic approximation limit and within the effective mass approximation. We study the energy levels associated with the electron and the hole, and the energy of the exciton. Due to the axial symmetry of the problem the z component of the total orbital angular momentum, Lz=le+lh, is preserved and the exciton states are classified according to the values of this component. Quantum dots have a finite and variable thickness, with the purpose of analyzing the effects related to the variation of the morphology and the presence of a wet layer.  相似文献   

16.
A simple model is assumed to obtain analytical solutions of the Schrödinger equation in prolate spheroidal coordinates for the electron–hole pair confined to an ellipsoidal quantum dot (EQD) or to a semiellipsoidal quantum dot (SEQD). Numerical calculations are carried out to find the excitonic states as well as the electronic states decoupled from holes in such geometries. Their dependence on the inverse of the eccentricity of the ellipsoidal surfaces for different interfocal distances is investigated. The binding energy and the recombination radiation energy are calculated for GaAs and InAs QDs; the same dependences are also investigated. Comparison with previous calculations and experiments shows a good order-of-magnitude agreement. It is demonstrated that some of the available states in an EQD are forbidden in the SEQD and, consequently, some of the photoluminescence lines observed in the former case are suppressed in the latter geometry.  相似文献   

17.
We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.  相似文献   

18.
The energy states in semiconductor quantum dots are discrete as in atoms, and quantum states can be coherently controlled with resonant laser pulses. Long coherence times allow the observation of Rabi flopping of a single dipole transition in a solid state device, for which occupancy of the upper state depends sensitively on the dipole moment and the excitation laser power. We report on the robust population inversion in a single quantum dot using an optical technique that exploits rapid adiabatic passage from the ground to an excited state through excitation with laser pulses whose frequency is swept through the resonance. This observation in photoluminescence experiments is made possible by introducing a novel optical detection scheme for the resonant electron hole pair (exciton) generation.  相似文献   

19.
冯东海  贾天卿  徐至展 《中国物理》2003,12(9):1016-1020
The energy levels of zinc-blende GaN quantum dots (QDs) are studied within the framework of the effective-mass envelope-function approximation. The dependence of the energy of electron and hole states on the quantum dot (QD) size is presented. The selection rules for optical transitions are given and the oscillator strengths of the dipole-allowed transitions for various QD radii are calculated with the wavefunctions of quantized energy levels. The theoretical absorption spectrum of GaN QDs is in good agreement with the existing experimental result.  相似文献   

20.
We have developed a theory of transient resonance luminescence of a single quantum dot from the lowest energy states of electron-hole pairs. We consider a process in which laser pulses directly excite photonemitting states of electron-hole pairs of the quantum dot at room temperature. For definiteness, the model under the development takes into account two states of electron-hole pairs that contribute to luminescence. We have analyzed the dependence of the secondary emission process on the energy gap between these states, the value of which is determined by the quantum dot size. In terms of the Pauli master kinetic equation, an analytical expression for the time-dependent signal of the resonance luminescence has been obtained. We show that, as the spectral width of the exciting laser pulse tends to zero, this expression yields the signal of stationary luminescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号