首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We present a model for the viscous friction in foams and concentrated emulsions, subject to steady shear flow. First, we calculate the energy dissipated due to viscous friction inside the films between two neighboring bubbles or drops, which slide along each other in the flow. Next, from this energy we calculate the macroscopic viscous stress of the sheared foam or emulsion. The model predictions agree well with experimental results obtained with foams and emulsions.  相似文献   

2.
We suggest a scalar model for deformation and flow of an amorphous material such as a foam or an emulsion. To describe elastic, plastic and viscous behaviours, we use three scalar variables: elastic deformation, plastic deformation rate and total deformation rate; and three material-specific parameters: shear modulus, yield deformation and viscosity. We obtain equations valid for different types of deformations and flows slower than the relaxation rate towards mechanical equilibrium. In particular, they are valid both in transient or steady flow regimes, even at large elastic deformation. We discuss why viscosity can be relevant even in this slow shear (often called “quasi-static”) limit. Predictions of the storage and loss moduli agree with the experimental literature, and explain with simple arguments the non-linear large amplitude trends.  相似文献   

3.
We investigate experimentally the linear viscoelastic properties of a lamellar liquid foam as a function of the cell size and spatial organisation. The system consists of multilamellar vesicles generated by a simple shear flow on a lyotropic lamellar phase. The vesicles can be prepared either in an amorphous or a spatially ordered state. Their size is easily tunable in the range R = 0.5-15 μm. Whereas the shear modulus of the amorphous lamellar foam is alike that of usual liquid foams or concentrated emulsions and scales linearly with 1/R, the elastic modulus of the ordered foam is almost independent of the cell size. This result --probably the first describing the elasticity of an ordered foam-like system-- remains unexplained. Received 7 August 2000  相似文献   

4.
We study the fluid flow at the interface between elastic solids with randomly rough surfaces. We derive (approximate) analytical expressions for the fluid flow factors which enter in the equation describing the fluid flow, and for the frictional shear stress factors which enter in the equation for the frictional shear stress. Numerical results for a rubber cylinder with surface roughness sliding on a flat lubricated substrate, under “low” and “high” pressure conditions, are presented and discussed. Finally we discuss the role of the fluid-induced elastic deformations of the surface roughness profile.  相似文献   

5.
《Physica A》2006,365(2):265-281
We present results of theoretical study of quasielastic behavior of ferrofluid filling a thin flat gap, placed into perpendicular magnetic field. When the field exceeds a certain critical magnitude, magnetic particles form dense discrete domains, elongated along the field, and linking the gap boundaries. Due to these bridges between the gap boundaries, the ferrofluid exhibits quasielastic properties with respect to shear strain in the plane of the gap. We estimated the elastic modules as well as the yield stress of the system, depending on magnetic field and concentration of magnetic particles in the ferrofluid. Analysis shows that there are at least two microscopical mechanisms of transition from the elastic to fluid behavior of the ferrofluid. The first one is connected with the loss of the mechanical equilibrium of the domains, slopped, under the shear stress, with respect to applied magnetic field. The second mechanism is connected with breakup of the “bridge” into two separate drops, when the shear strain exceeds some critical magnitude. Estimates show that for real ferrofluids the second mechanism is more probable.  相似文献   

6.
7.
We study numerically the formation of long-lived transient shear bands during shear startup within two models of soft glasses (a simple fluidity model and an adapted "soft glassy rheology" model). The degree and duration of banding depends strongly on the applied shear rate, and on sample age before shearing. In both models the ultimate steady flow state is homogeneous at all shear rates, consistent with the underlying constitutive curve being monotonic. However, particularly in the soft glassy rheology case, the transient bands can be extremely long lived. The banding instability is neither "purely viscous" nor "purely elastic" in origin, but is closely associated with stress overshoot in startup flow.  相似文献   

8.
We report an elastic instability associated with flow-induced clustering in semidilute non-Brownian colloidal nanotubes. Rheo-optical measurements are compared with simulations of mechanical flocculation in sheared fiber suspensions, and the evolving structure is characterized as a function of confinement and shear stress. The transient rheology is correlated with the evolution of highly elastic vorticity-aligned aggregates, with the underlying instability being somewhat ubiquitous in complex fluids.  相似文献   

9.
Ductile titanium alloy with low Poisson's ratio   总被引:1,自引:0,他引:1  
We report a ductile beta-type titanium alloy with body-centered cubic (bcc) crystal structure having a low Poisson's ratio of 0.14. The almost identical ultralow bulk and shear moduli of approximately 24 GPa combined with an ultrahigh strength of approximately 0.9 GPa contribute to easy crystal distortion due to much-weakened chemical bonding of atoms in the crystal, leading to significant elastic softening in tension and elastic hardening in compression. The peculiar elastic and plastic deformation behaviors of the alloy are interpreted as a result of approaching the elastic limit of the bcc crystal under applied stress.  相似文献   

10.
The constitution of blood demands a yield stress fluid model, and among the available yield stress fluid models for blood flow, the Herschel-Bulkley model is preferred (because Bingham, Power-law and Newtonian models are its special cases). The Herschel-Bulkley fluid model has two parameters, namely the yield stress and the power law index. The expressions for velocity, plug flow velocity, wall shear stress, and the flux flow rate are derived. The flux is determined as a function of inlet, outlet and external pressures, yield stress, and the elastic property of the tube. Further when the power-law index n = 1 and the yield stress τ 0 → 0, our results agree well with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Furthermore, it is observed that, the yield stress and the elastic parameters (t 1 and t 2) have strong effects on the flux of the non-Newtonian fluid flow in the elastic tube. The results obtained for the flow characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.  相似文献   

11.
We investigate the formation of ringlike deposits in drying drops of DNA. In analogy with the colloidal "coffee rings," DNA is transported to the perimeter by the capillary flow. At the droplet edge, however, DNA forms a lyotropic liquid crystal (LC) with concentric chain orientations to minimize the LC elastic energy. During the final stages of drying, the contact line retracts, and the radial stress causes undulations at the rim that propagate inward through the LC and form a periodic zigzag structure. We examine the phenomenon in terms of a simple model based on LC elasticity.  相似文献   

12.
We study the viscoelastic behavior of aqueous foam mixed with solid noncolloidal particles. We show that adding a tiny amount of grains can enhance the elastic and loss shear moduli by more than 1 order of magnitude. The scaling of these moduli with solid volume fraction is in qualitative agreement with that predicted by an effective-medium rigidity percolation model. We present a simple model, based on capillary attraction, to explain the particle-size dependence of the threshold.  相似文献   

13.
We describe the direct observation of deforming water drops in oil undergoing shear flow in a horizontal annular Couette cell. The drops assume a wide variety of highly reproducible structures depending on drop size, rotation speed, and flow history. These structures include toroidal rings of water around the rotating shaft and water sheaths, which, depending on experimental conditions, can either expand to press against the inner walls of the outer stationary cylinder or contract to hug the outside of the rotating shaft.  相似文献   

14.
We report some time-dependent behavior of lyotropic lamellar phase under shear flow. At fixed stress, near a layering instability, the system presents an oscillating shear rate. We build up a new stress versus shear rate diagram that includes temporal behavior. This diagram is made of two distinct branches of stationary states which correspond, respectively, to disordered and ordered multilamellar vesicle phases. When increasing the shear stress, prior to the transition to the ordered structural state, sustained oscillations of the viscosity are recorded. They correspond to periodic structural change of the entire sample between a disordered and a ordered state of multilamellar vesicles.  相似文献   

15.
The plastic flow of a foam results from bubble rearrangements. We study their occurrence in experiments where a foam is forced to flow in 2D: around an obstacle; through a narrow hole; or sheared between rotating disks. We describe their orientation and frequency using a topological matrix defined in the companion paper (F. Graner, B. Dollet, C. Raufaste, and P. Marmottant, this issue, 25 (2008) DOI 10.1140/epje/i2007-10298-8), which links them with continuous plasticity at large scale. We then suggest a phenomenological equation to predict the plastic strain rate: its orientation is determined from the foam's local elastic strain; and its rate is determined from the foam's local elongation rate. We obtain a good agreement with statistical measurements. This enables us to describe the foam as a continuous medium with fluid, elastic and plastic properties. We derive its constitutive equation, then test several of its terms and predictions.  相似文献   

16.
We report a simple experiment in freestanding smectic films in which elastic distortions of the c director drive macroscopic flow. The flow field is visualized with tracer particles. Measurements are compared to predictions of a model that employs the coupled dynamic equations for director and velocity fields. Relaxation dynamics depends on the topology of the film center: for defect-free target patterns, shear flow provides the dominating contribution to the c director dynamics. In presence of a central topological defect of strength S = + 1, the influence of flow on the relaxation dynamics is practically negligible, while for a central S = - 1 defect, the influence of vortex flow on the c-director relaxation is roughly twice as large as for the defect-free state.  相似文献   

17.
Sea ice contains flaws including frictional contacts. We aim to describe quantitatively the mechanics of those contacts, providing local physics for geophysical models. With a focus on the internal friction of ice, we review standard micro-mechanical models of friction. The solid's deformation under normal load may be ductile or elastic. The shear failure of the contact may be by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models. When the material under study is ice, several of the rheological parameters in the standard models are not constant, but depend on the temperature of the bulk, on the normal stress under which samples are pressed together, or on the sliding velocity and acceleration. This has the effect of making the shear stress required for sliding dependent on sliding velocity, acceleration, and temperature. In some cases, it also perturbs the exponent in the normal-stress dependence of that shear stress away from the value that applies to most materials.

We unify the models by a principle of maximum displacement for normal deformation, and of minimum stress for shear failure, reducing the controversy over the mechanism of internal friction in ice to the choice of values of four parameters in a single model. The four parameters represent, for a typical asperity contact, the sliding distance required to expel melt-water, the sliding distance required to break contact, the normal strain in the asperity, and the thickness of any ductile shear zone.  相似文献   

18.
19.
A combination of molecular dynamics (MD), continuum elasticity and FEM is used to predict the effect of CNT orientation on the shear modulus of SWCNT-polymer nanocomposites. We first develop a transverse-isotropic elastic model of SWCNTs based on the continuum elasticity and MD to compute the transverse-isotropic elastic constants of SWCNTs. These constants are then used in an FEM-based simulation to investigate the effect of SWCNT alignment on the shear modulus of nanocomposites. Furthermore, shear stress distributions along the nanotube axis and over its cross-sectional area are investigated to study the effect of CNT orientation on the shear load transfer.  相似文献   

20.
Recently synthesized low-density cubic BC2N exhibits surprisingly high shear strength inferred by nanoindentation in stark contrast to its relatively low elastic moduli. We show by first-principles calculation that this intriguing phenomenon can be ascribed to a novel structural hardening mechanism due to the compressive stress beneath the indenter. It significantly strengthens the weak bonds connecting the shear planes, yielding a colossal enhancement in shear strength. The resulting biaxial stress state produces atomistic fracture modes qualitatively different from those under pure shear stress. These results provide the first consistent explanation for a variety of experiments on the low-density cubic BC2N phase across a large range of strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号