共查询到20条相似文献,搜索用时 15 毫秒
1.
Barbara Nozire Markus Spittler Lars Ruppert Ian Barnes Karl H. Becker Manuel Pons Klaus Wirtz 《国际化学动力学杂志》1999,31(4):291-301
The rate constant for the reaction of OH radicals with pinonaldehyde has been measured at 293 ± 6 K using the relative rate method in the laboratory in Wuppertal (Germany) using photolytic sources for the production of OH radicals and in the EUPHORE smog chamber facility in Valencia (Spain) using the in situ ozonolysis of 2,3‐dimethyl‐2‐butene as a dark source of OH radicals. In all the experiments pinonaldehyde and the reference compounds were monitored by FTIR spectroscopy, and in addition in the EUPHORE smog chamber the decay of pinonaldehyde was monitored by the HPLC/DNPH method and the reference compound by GC/FID. The results from all the different series of experiments were in good agreement and lead to an average value of k(pinonaldehyde + OH) = (4.0 ± 1.0) × 10−11 cm3 molecule−1 s−1. This result lead to steady‐state estimates of atmospheric pinonaldehyde concentrations in the ppbV range (1 ppbV ≈ 2.5 × 1010 molecule cm−3 at 298 K and 1 atm) in regions with substantial α‐pinene emission. It also implies that atmospheric sinks of pinonaldehyde by reaction with OH radicals could be half as important as its photolysis. The rate constant of the reaction of pinonaldehyde with Cl atoms has been measured for the first time. Relative rate measurements lead to a value of k(pinonaldehyde + Cl) = (2.4 ± 1.4) × 10−10 cm3 molecule−1 s−1. In contrast to previous studies which suggested enhanced kinetic reactivity for pinonaldehyde compared to other aldehydes, the results from both the OH‐ and Cl‐initiated oxidation of pinonaldehyde in the present work are in line with predictions using structure‐activity relationships. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 291–301, 1999 相似文献
2.
Bndicte Picquet Sbastien Heroux Abderraouf Chebbi Jean-Franois Doussin Rgine Durand-Jolibois Anne Monod Hlne Loirat Patrick Carlier 《国际化学动力学杂志》1998,30(11):839-847
Some relative rate experiments have been carried out at room temperature and at atmospheric pressure. This concerns the OH-oxidation of some oxygenated volatile organic compounds including methanol (k1), ethanol (k2), MTBE (k3), ethyl acetate (k4), n-propyl acetate (k5), isopropyl acetate (k6), n-butyl acetate (k7), isobutyl acetate (k8), and t-butyl acetate (k9). The experiments were performed in a Teflon-film bag smog chamber. The rate constants obtained are (in cm3 molecule−1 s−1): k1=(0.90±0.08)×10−12; k2=(3.88±0.11)×10−12; k3=(2.98±0.06)×10−12; k4=(1.73±0.20)×10−12; k5=(3.56±0.15)×10−12; k6=(3.97±0.18)×10−12; k7=(5.78±0.15)×10−12; k8=(6.77±0.30)×10−12; and k9=(0.56±0.11)×10−12. The agreement between the obtained rate constants and some previously published data has allowed for most of the studied compounds to point out a coherent group of values and to suggest recommended values. Atmospheric implications are also discussed. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 839–847, 1998 相似文献
3.
Rate constants for the reactions of Cl atoms and OH radicals with haloalkanes were measured using the relative rate technique. From these values the atmospheric lifetimes of the organics with respect to Cl atoms and OH radicals were calculated. Cl atoms were produced by the photolysis of chlorine gas, and photolysis of methyl nitrite was the source of OH radicals. The rate constants were measured for a series of brominated and chlorinated alkanes for which measurements have not yet been reported excepting: k(Cl + 1-chloropropane) and k(OH + 1-chloropropane, 2-chloropropane, and bromoethane). The organics studied were 1-chloropropane, 2-chloropropane, 1,3 dichloropropane, 2-chloro 2methylpropane, bromoethane, 1-bromopropane, 2-bromopropane, 1-bromobutane, 1-bromopentane, and 1-bromohexane. Cl atom reactions were measured at 298 K, the OH radical reactions were measured at temperatures between 298–308 K. © 1993 John Wiley & Sons, Inc. 相似文献
4.
The kinetic and mechanism of the reaction Cl + HO2 → products (1) have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium using the discharge‐flow mass spectrometric method. The following Arrhenius expression for the total rate constant was obtained either from the kinetics of HO2 consumption in excess of Cl atoms or from the kinetics of Cl in excess of HO2: k1 = (3.8 ± 1.2) × 10?11 exp[(40 ± 90)/T] cm3 molecule?1 s?1, where uncertainties are 95% confidence limits. The temperature‐independent value of k1 = (4.4 ± 0.6) × 10?11 cm3 molecule?1 s?1 at T = 230–360 K, which can be recommended from this study, agrees well with most recent studies and current recommendations. Both OH and ClO were detected as the products of reaction (1) and the rate constant for the channel forming these species, Cl + HO2 → OH + ClO (1b), has been determined: k1b = (8.6 ± 3.2) × 10?11 exp[?(660 ± 100)/T] cm3 molecule?1 s?1 (with k1b = (9.4 ± 1.9) × 10?12 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 317–327, 2001 相似文献
5.
The atmospheric chemistry of CCl2FCH2CF3 (HFCF-234fb) was examined using FT-IR/relative-rate methods. Hydroxyl radical and chlorine atom rate coefficients of k(CCl2FCH2CF3+OH)= (2.9 ± 0.8) × 10−15 cm3 molecule–1 s–1 and k(CCl2FCH2CF3+Cl)= (2.3 ± 0.6) × 10−17 cm3 molecule–1 s–1 were determined at 297 ± 2 K. The OH rate coefficient determined here is two times higher than the previous literature value. The atmospheric lifetime for CCl2FCH2CF3 with respect to reaction with OH radicals is approximately 21 years using the OH rate coefficient determined in this work, estimated Arrhenius parameters and scaling it to the atmospheric lifetime of CH3CCl3. The chlorine atom initiated oxidation of CCl2FCH2CF3 gives C(O)F2 and C(O)ClF as stable secondary products. The halogenated carbon balance is close to 80% in our system. The integrated IR absorption cross-section for CCl2FCH2CF3 is 1.87 × 10−16 cm molecule−1 (600–1600 cm−1) and the radiative efficiency was calculated to 0.26 W m−2 ppb1. A 100-year Global Warming Potential (GWP) of 1460 was determined, accounting for an estimated stratospheric lifetime of 58 years and using a lifetime-corrected radiative efficiency estimation. 相似文献
6.
Using a relative rate technique, rate constants have been determined for the gas-phase reactions of Cl atoms with the cholorethenes and ethane at 298 ± 2 K and 735 torr total pressure of air. Using a rate constant of 1.97 × 10?10 cm3 molecule?1 s?1 for the reaction of Cl atoms with n-butane, the following rate constants (in units of 10?11 cm3 molecule?1 s?1) were obtained: vinyl chloride, 12.7 ± 0.2; 1,1-dichloroethene, 14.0 ± 0.2; cis-1,2-dichloroethene, 9.65 ± 0.10; trans-1,2-dichloroethene, 9.58 ± 0.18; trichloroethene, 8.08 ± 0.10; tetrachloroethene, 4.13 ± 0.23; and ethane, 6.17 ± 0.08 (where the indicated error limits do not include the uncertainties in the rate constant for n-butane). A small amount of cis-trans isomerization was observed for the reactions involving the cis- and trans-1,2-dichloroethenes. These data are compared and discussed with the available literature data. 相似文献
7.
The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10?11 exp{(?1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10?12 exp{(?810 ± 50)/T} cm3 molecule?1 s?1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10?13 cm3 molecule?1 s?1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc. 相似文献
8.
Caregnato P Gara PD Bosio GN Mártire DO Gonzalez MC 《Photochemistry and photobiology》2007,83(4):944-951
Reactions of chlorine radicals might play a role in aqueous aerosols where a core of inorganic components containing insulators such as SiO2 and dissolved HUmic-LIke Substances (HULIS) are present. Herein, we report conventional flash photolysis experiments performed to investigate the aqueous phase reactions of silica nanoparticles (NP) and humic acid (HA) with chlorine atoms, Cl*, and dichloride radical anions, Cl2*-. Silica NP and HA may be taken as rough models for the inorganic core and HULIS contained in atmospheric particles, respectively. Both Cl* and Cl2*- were observed to react with the deprotonated silanols on the NP surface with reaction rate constants, k +/- sigma, of (9 +/- 6) x 10(7) M(-1) s(-1) and (7 +/- 4) x 10(5) M(-1) s(-1), respectively. The reaction of Cl* with the surface deprotonated silanols leads to the formation of SiO* defects. HA are also observed to react with Cl* and Cl2*- radicals, with reaction rate constants at pH 4 of (3 +/- 2) x 10(10) M(-1) s(-1) and (1.2 +/- 0.3) x 10(9) M(-1) s(-1), respectively. The high values observed for these constants were discussed in terms of the multifunctional heterogeneous mixture of organic molecules conforming HA. 相似文献
9.
Kelly T Bossoutrot V Magneron I Wirtz K Treacy J Mellouki A Sidebottom H Le Bras G 《The journal of physical chemistry. A》2005,109(2):347-355
Product distribution studies of the OH radical and Cl atom initiated oxidation of CF3CH2CH2OH in air at 1 atm and 298 +/- 5 K have been carried out in laboratory and outdoor atmospheric simulation chambers in the presence and absence of NOx. The results show that CF3CH2CHO is the only primary product and that the aldehyde is fairly rapidly removed from the system. In the absence of NOx the major degradation product of CF3CH2CHO is CF3CHO, and the combined yields of the two aldehydes formed from CF3CH2CH2OH are close to unity (0.95 +/- 0.05). In the presence of NOx small amounts of CF3CH2C(O)O2NO2 were also observed (<15%). At longer reaction times CF3CHO is removed from the system to give mainly CF2O. The laser photolysis-laser induced fluorescence technique was used to determine values of k(OH + CF3CH2CH2OH) = (0.89 +/- 0.03) x 10(-12) and k(OH + CF3CH2CHO) = (2.96 +/- 0.04) x 10(-12) cm3 molecule(-1) s(-1). A relative rate method has been employed to measure the rate coefficients k(OH + CF3CH2CH2OH) = (1.08 +/- 0.05) x 10(-12), k(OH + C6F13CH2CH2OH) = (0.79 +/- 0.08) x 10(-12), k(Cl + CF3CH2CH2OH) = (22.4 +/- 0.4) x 10(-12), and k(Cl + CF3CH2CHO) = (25.7 +/- 0.4) x 10(-12) cm3 molecule(-1) s(-1). The results from this investigation are discussed in terms of the possible importance of emissions of fluorinated alcohols as a source of fluorinated carboxylic acids in the environment. 相似文献
10.
Rate constants have been measured at room temperature for the reactions of Cl atoms with formic acid and with the HOCO radical: Cl + HCOOH → HCl + HOCO (R1) Cl + HOCO → HCl + CO2 (R2) Cl atoms were generated by flash photolysis of Cl2 and the progress of reaction was followed by time‐resolved infrared absorption measurements using tunable diode lasers on the CO2 that was formed either in the pair of reactions ( R1 ) plus ( R2 ), or in reaction ( R1 ) followed by O2 + HOCO → HO2 + CO2 (R3) In a separate series of experiments, conditions were chosen so that the kinetics of CO2 formation were dominated either by the rate of reaction ( R1 ) or by that of reactions ( R1 ) and ( R2 ) combined. The results of our analysis of these experiments yielded: k1 = (1.83 ± 0.12) × 10−13 cm3 molecule−1 s−1 k2 = (4.8 ± 1.0) × 10−11 cm3 molecule−1 s−1 © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 85–91, 2000 相似文献
11.
Darren P. Starkey Kenneth A. Holbrook Geoffrey A. Oldershaw Raymond W. Walker 《国际化学动力学杂志》1997,29(3):231-236
The rate constants for the gas-phase reactions between methylethylether and hydroxyl radicals (OH) and methylethylether and chlorine atoms (Cl) have been determined over the temperature range 274–345 K using a relative rate technique. In this range the rate constants vary little with temperature and average values of kMEE+OH = (6.60−2.62+3.88) × 10−12 cm3 molecule−1 s−1 and kMEE+Cl= (34.9 ± 6.7) × 10−11 cm3 molecule−1 s−1 were obtained. The atmospheric lifetimes of methylethylether have been estimated with respect to removal by OH radicals and Cl atoms to be ca. 2 days and ca. 30–40 days, respectively. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 231–236, 1997. 相似文献
12.
Rate constants for the reactions of OH radicals and Cl atoms with CH3ONO, C2H5ONO, n-C3H7ONO, n-C4H9ONO, and n-C5H11ONO have been determined at 298 ± 2 K and a total pressure of approximately 1 atm. The OH rate data were obtained using both the absolute rate technique of pulse radiolysis combined with kinetic spectroscopy and a relative rate method involving simultaneous measurement of the loss of the nitrite and the reference compound. The Cl rate constants were measured using the relative rate method. Values of the rate constants in units of 10?13 cm3 molecule?1 s?1 are:
When compared to rate data for the corresponding alkanes the results show that the -ONO group decreases the rate constant for H atom abstraction by the OH radical from groups bonded to the -ONO group and also decreases that for groups in the β position. Similar results were found for the reaction of Cl atoms with these compounds. The results are discussed in terms of reactivity trends. 相似文献
Relative Cl | Relative OH | Absolute OH | |
---|---|---|---|
CH3ONO | 94.4 ± 7.4 | 3.0 ± 1.0 | 2.6 ± 0.5 |
C2H5ONO | 295 ± 13 | 7.0 ± 1.5 | 7.0 ?1.1 |
n-C3H7ONO | 646 ± 58 | 11.0 ± 1.5 | 12.0 ± 0.5 |
n-C4H9ONO | 1370 ± 58 | 22.7 ± 0.8 | 27.2 ± 6.0 |
n-C5H11ONO | 2464 ± 444 | 37.4 ± 5.0 | 42.5 ± 8.0 |
13.
Ceacero-Vega AA Ballesteros B Bejan I Barnes I Jiménez E Albaladejo J 《The journal of physical chemistry. A》2012,116(16):4097-4107
Relative kinetic techniques have been used to measure the rate coefficients for the reactions of oxygenated terpenes (menthol, borneol, fenchol, camphor, and fenchone) and cyclohexanol with hydroxyl radicals (OH) and chlorine atoms (Cl) at 298 ± 2 K and atmospheric pressure. The rate coefficients obtained for the reactions of the title compounds with OH are the following (in units of 10(-11) cm(3) molecule(-1) s(-1)): (1.48 ± 0.31), (2.65 ± 0.32), (2.49 ± 0.30), (0.38 ± 0.08), (0.39 ± 0.09) for menthol, borneol, fenchol, camphor, and fenchone, respectively. For the corresponding reactions with Cl atoms the rate coefficients are as follows (in units of 10(-10) cm(3) molecule(-1) s(-1)): (3.21 ± 0.26), (3.40 ± 0.28), (2.72 ± 0.13), (2.93 ± 0.17), (1.59 ± 0.10), and (1.86 ± 0.29) for cyclohexanol, menthol, borneol, fenchol, camphor, and fenchone, respectively. The reported error is twice the standard deviation. Product studies of the reactions were performed using multipass in situ FTIR (Fourier transform infrared spectroscopy) and solid-phase microextraction (SPME) with analysis by GC-MS (gas chromatography-mass spectrometry). A detailed mechanism is proposed to justify the observed reaction products. 相似文献
14.
T. J. Wallington J. C. Ball A. M. Straccia M. D. Hurley E. W. Kaiser M. Dill W. F. Schneider M. Bilde 《国际化学动力学杂志》1996,28(8):627-635
The kinetics and mechanism of the gas-phase reaction of Cl atoms with CH2CO have been studied with a FTIR spectrometer/smog chamber apparatus. Using relative rate methods the rate of reaction of Cl atoms with ketene was found to be independent of total pressure over the range 1–700 torr of air diluent with a rate constant of (2.7 ± 0.5) × 10−10 cm3 molecule−1 s−1 at 295 K. The reaction proceeds via an addition mechanism to give a chloroacetyl radical (CH2ClCO) which has a high degree of internal excitation and undergoes rapid unimolecular decomposition to give a CH2Cl radical and CO. Chloroacetyl radicals were also produced by the reaction of Cl atoms with CH2ClCHO; no decomposition was observed in this case. The rates of addition reactions are usually pressure dependent with the rate increasing with pressure reflecting increased collisional stabilization of the adduct. The absence of such behavior in the reaction of Cl atoms with CH2CO combined with the fact that the reaction rate is close to the gas kinetic limit is attributed to preferential decomposition of excited CH2ClCO radicals to CH2Cl radicals and CO as products as opposed to decomposition to reform the reactants. As part of this work ab initio quantum mechanical calculations (MP2/6-31G(d,p)) were used to derive ΔfH298(CH2ClCO) = −(5.4 ± 4.0) kcal mol−1. © 1996 John Wiley & Sons, Inc. 相似文献
15.
Limberg C 《Chemistry (Weinheim an der Bergstrasse, Germany)》2000,6(12):2083-2089
The simple metal oxo compound chromyl chloride, CrO2Cl2, displays a very complex reactivity with respect to alkanes, olefins, alcohols, and epoxides. Synergetic investigations applying various techniques and methods have only recently led to an understanding of the key steps in the corresponding mechanisms, which are representative for more complex systems. Product formation seems to be largely determined by radical reactions initiated by this d0-metal compound. 相似文献
16.
On the basis of the reaction of sulfur with exo-halogen derivatives of ethylbenzene and styrene, new and simple methods of synthesis have been developed for 2,4-diphenylthiophene (from C6H5CHBrCH3), 2, 5-diphenylthiophene (from C6H5CCl=CH2), 2,3-dichlorothionaphthene (from C6H5CCl2CHCl2), and the previously unknown dithianaphtheno-[2,3-b;2,3-e]-1,4-dithiadiene (from C6H5CHClCHClBr). The latter compound is also formed by the action of sulfur on C6H5CCl2CH2Cl or C6H5CHClCHCl2 in the presence of HBr. The derivatives of thianaphthene obtained have been oxidized to the corresponding sulfones.For communication XIV see [1].Presented on 11 May 1966 at the Second Symposium on Organic Compounds of Sulfur at Groningen (Holland). 相似文献
17.
M. P. Sulbaek Andersen D. A. Ponomarev O. J. Nielsen M. D. Hurley T. J. Wallington 《Chemical physics letters》2001,350(5-6):423-426
Smog chamber/FTIR techniques were used to study the kinetics and mechanism of the reaction of Cl atoms with iodobenzene (C6H5I) in 20–700 Torr of N2, air, or O2 diluent at 296 K. The reaction proceeds with a rate constant k(Cl+C6H5I)=(3.3±0.7)×10−11 cm3 molecule−1 s−1 to give chlorobenzene (C6H5Cl) in a yield which is indistinguishable from 100%. The title reaction proceeds via a displacement mechanism (probably addition followed by elimination). 相似文献
18.
Using a relative rate technique, rate constants have been determined for the gas phase reactions of Cl atoms with a series of organics at 296 ± 2 K and atmospheric pressure of air. Using a rate constant of 1.97 × 10?10 cm3 molecule?1 s?1 for the reaction of Cl atoms with n-butane, the following rate constants (in units of 10?11 cm3 molecule?1 s?1) were obtained: ethane, 6.38 ± 0.18; propane, 13.4 ± 0.5; isobutane, 13.7 ± 0.2; n-pentane, 25.2 ± 1.2; isopentane, 20.3 ± 0.8; neopentane, 11.0 ± 0.3; n-hexane, 30.3 ± 0.6; cyclohexane, 31.1 ± 1.4; 2,3-dimethylbutane, 20.7 ± 0.6; n-heptane, 34.1 ± 1.2; acetylene, 6.28 ± 0.18; ethene, 10.6 ± 0.3; propene, 24.4 ± 0.8; benzene, 1.5 ± 0.9; and toluene, 5.89 ± 0.36. These data are compared and discussed with the available literature values. 相似文献
19.
Ying Wang Jing-yao Liu Lei Yang Xiao-lei Zhao Yue-Meng Ji Ze-sheng Li 《Journal of Molecular Structure》2007,820(1-3):26-34
The hydrogen abstraction reactions of C2F5CHO with OH radicals and Cl atoms have been investigated theoretically by a dual-level direct dynamics method. In this study, the optimized geometries and frequencies of the stationary points are calculated at the MP2/cc-pVDZ level of theory. The energies of the stationery points and the selected points along the minimum energy paths are further refined at the MC-QCISD level using the MP2 geometries. Complexes with energies less than those of the reactants or products are located at the entrance or the exit channels of the two reactions. This result indicates that both of reactions proceed via indirect reaction mechanisms. The enthalpies of formation for the reactant C2F5CHO and the product radical C2F5CO are estimated by isodesmic reactions at the MC-QCISD//MP2/cc-pVDZ level. At the same level, the rate constants are calculated by canonical variational transition state theory (CVT) incorporating with the small-curvature tunneling correction (SCT) in the temperature range 200–1000 K. Good agreement between the calculated and experimental rate constants is obtained at the room temperature. Due to the lack of the kinetic data of these reactions, the fitted three-parameter expressions based on the CVT/SCT rate constants within 200–1000 K are k1 = 1.64 × 10−24 T4.33 exp (−566.1/T) and k2 = 6.33 × 10−15 T1.35 exp (550.3/T) cm3 molecule−1 s−1, respectively. 相似文献
20.
Eskola AJ Geppert WD Rissanen MP Timonen RS Halonen L 《The journal of physical chemistry. A》2005,109(24):5376-5381
The kinetics of the reactions of chlorinated methyl radicals (CH2Cl, CHCl2, and CCl3) with NO2 have been studied in direct measurements at temperatures between 220 and 360 K using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated at 193 or 248 nm by pulsed laser photolysis of appropriate precursors. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of NO2 being in large excess over radical concentrations. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (1-6 Torr) and are found to depend on temperature as follows: k(CH2Cl + NO2) = (2.16 +/- 0.08) x 10(-11) (T/300 K)(-1.12+/-0.24) cm3 molecule(-1) s(-1) (220-363 K), k(CHCl2 + NO2) = (8.90 +/- 0.16) x 10(-12) (T/300 K)(-1.48+/-0.13) cm3 molecule(-1) s(-1) (220-363 K), and k(CCl3 + NO2) = (3.35 +/- 0.10) x 10(-12) (T/300 K)(-2.2+/-0.4) cm3 molecule(-1) s(-1) (298-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the reactions CH2Cl + NO2, CHCl2 + NO2, and CCl3 + NO2, the products observed are formaldehyde, CHClO, and phosgene (CCl2O), respectively. In addition, a weak signal for the HCl formation has been detected for the CHCl2 + NO2 reaction. 相似文献