首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rigorous thermodynamic treatment appropriate for surface adsorption from mixed aqueous solution of alkali and polyprotic acid was derived. Those equations were applied to mixed aqueous solution/air systems of alkali metal hydroxide and FeIII complex with ethylenediamine- N, N, N′,N′-tetraacetate (Fe-EDTA). Surface density of each species arising from Fe-EDTA was separately evaluated, and thus, surface activity of Fe-EDTA was studied, especially its dependence on pH and how it is influenced by the counter cations. Fe-EDTA was positively adsorbed at the water/air interface at very low pHs and negatively at high pHs. The pH range of positive adsorption of Fe-EDTA with potassium ion, as a counter ion, was wider than that with sodium ion. Thus, potassium ion, a structure breaker, tended to smooth surface adsorption of Fe-EDTA at the water/air interface, whereas sodium ion, a structure maker, tended to withdraw Fe-EDTA from the interfacial region.  相似文献   

2.
Fats are widely present in a large variety of food and represent the main source of energy for the body. In the current study we investigate the behaviour of fatty acids at liquid–liquid interfaces, mimicking some steps of the very complex digestion process. Octanoic acid is used as an example of middle chain fatty acids. For the oil phase we choose sunflower oil as an industrial product and hexane as pure oil.The influence of the fatty acid concentration and the pH of the aqueous phase on the interfacial tension is determined by profile analyse tensiometry (PAT), which allows to examine the way of adsorption and transition of the fatty acids from one phase to the other. Predominantly, the pH affects the dissociation and thereby the strength of the hydrophilic character of the fatty acid. The adsorption behaviour indicates the different interfacial activity of the studied octanoic acid.  相似文献   

3.
Adsorption layers of n-dodecanol at the water/air interface show phase transitions at low temperatures [Vollhardt, Fainerman, Emrich, J. Phys. Chem. B 104 (2000) 8536]. Using a drop shape technique it is shown that the dilational elasticity disappears in the coexistence region of the adsorption layer. The relaxation time between the condensed and liquid-like surface states is in the sub-second time range.  相似文献   

4.
The interaction of oleic acid at sillimanite-water interface was studied by adsorption, FT-IR, and zeta potential measurements. The isoelectric point (IEP) of sillimanite obtained at pH 8.0 was found to shift in the presence of oleic acid. This shift in IEP was attributed to chemisorption of oleic acid on sillimanite. Adsorption experiments were conducted at pH 8.0, where the sillimanite surface is neutral. The adsorption isotherm exhibited a plateau around 5 micromol/m2 that correspond to a monolayer formation. Adsorption of oleic acid on sillimanite, alumina, and aluminum hydroxide was studied by FT-IR. Chemisorption of oleic acid on the above substrates was confirmed by FT-IR studies. Hydroxylation of mineral surface was found to be essential for the adsorption of oleic acid molecules. These surface hydroxyl sites were observed to facilitate deprotonation of oleic acid and its subsequent adsorption. Thus protons from oleic acid react with surface hydroxyl groups and form water molecules. Based on the experimental results, the mechanism of oleic acid adsorption on mineral substrate was proposed. Free energy of adsorption was estimated using the Stern-Graham equation for a sillimanite-oleate system.  相似文献   

5.
Formation of inner- and outer-sphere complexes of environmentally important divalent ions on the goethite surface was examined by applying the charge distribution CD model for inner- and outer-sphere complexation. The model assumes spatial charge distribution between the surface (0-plane) and the next electrostatic plane (1-plane) for innersphere complexation and between the 1-plane and the head end of the diffuse double layer (2-plane) for the outersphere complexation. The latter approach has been used because the distance of closest approach to a charged surface may differ for different ions. The surface structural approach implies the use of a Three-Plane model for the compact part (Stern layer) of solid-solution interface, which is divided into two layers. The thickness of each layer depends on the capacitance and the local dielectric constant. The new approach has been applied to describe the adsorption of magnesium, calcium, strontium, and sulfate ions. It is shown that the concept can successfully describe the development of surface charge in the presence of Ca(+2), Mg(+2), Sr(+2), and SO4(-2) as a function of loading, pH, and salt level, and also the shift in the isoelectric point (IEP) of goethite. The CD modeling revealed that, for the conditions studied, magnesium is mainly adsorbed as a bidentate innersphere complex, calcium can be a combination of bidentate innersphere and a monodentate inner- or outer-sphere complexes, and strontium is probably adsorbed as an outersphere complex. Sulfate is present as a mixture of inner- and outer-sphere monodentate complexes. Outersphere complexation is less pH dependent than innersphere complexation. The CD model predicts that the outersphere complexation of divalent cations and anions is relatively favorable at respectively low and high pH. Increase of ion loading favors the formation of innersphere complexes.  相似文献   

6.
Equilibrium surface tension (sigma(e)) and electric surface potential (DeltaV(e)) versus concentration isotherms of the homologous series of N-cycloalkylaldonamides synthesized from cycloalkylamines (from cyclopentyl- to cyclododecylamine) and D-glucono-1,5-lactone (c-C(n)GA) or D-glucoheptono-1,4-lactone (c-C(n)GHA) (c-n(C) = 5-12) were investigated at the air/water interface. The measurements were performed with aqueous, surface chemically pure surfactant solutions. Equilibrium surface tension vs concentration isotherms were evaluated to get the adsorption parameters, i.e., standard free energy of adsorption, DeltaG degrees (ads), saturation surface concentration, Gamma(infinity), minimum surface area demand per molecule adsorbed, A(min), and interaction parameter, H(s). Increasing the size of the cycloalkyl moiety leads to a significant increase of the minimum surface area demand per molecule adsorbed. This fact, together with a decrease of the intermolecular interaction parameter suggests that the introduction of a more bulky cycloalkyl ring (c-n(C) = 7 and 8) causes an attenuation of the hydrogen-bond network. This goes in line with the exceptional finding that the higher homologues revealed improved solubility in water. In addition, surface tension investigations suggest occurrence of a phase transition for the N-cyclooctylaldonamides at relatively small surface coverage. This observation is well supported by the surface potential measurements, for which the effect of possible changes in the molecules' surface orientation is even more pronounced. Moreover, the concentration intervals of N-cyclooctylaldonamide in which the change in orientation is observed for either the surface tension or the surface potential isotherms are in very good agreement.  相似文献   

7.
A scanning tunneling microscope operated under ambient conditions was utilized to study the self-assembly of trimesic acid (TMA) at the liquid-solid interface. On a graphite substrate, two different open, loosely packed, two-dimensional hydrogen-bond networks were found. Both structures exhibit a periodic arrangement of approximately 1.0 nm wide cavities, which can be used for the co-adsorption of another species (guest) within the cells of this host system. These two polymorphs ("chickenwire" and "flower" structures) differ in their molecular packing density and hydrogen-bonding schemes. Using a homologous series of alkanoic acids as solvents, ranging from butyric to nonanoic, selective self-assembly of either the "flower" or "chickenwire" forms was achieved on a graphite surface. Solubility of TMA in these acid solvents was found to decrease with increasing chain length, and the longer-chain solvents favored formation of the chickenwire polymorph structure on the surface.  相似文献   

8.
Adsorption of nanoparticles at the solid-liquid interface   总被引:1,自引:0,他引:1  
The adsorption of differently charged nanoparticles at liquid-solid interfaces was investigated by in situ X-ray reflectivity measurements. The layer formation of positively charged maghemite (γ-Fe(2)O(3)) nanoparticles at the aqueous solution-SiO(2) interface was observed while negatively charged gold nanoparticles show no adsorption at this interface. Thus, the electrostatic interaction between the particles and the charged surface was determined as the driving force for the adsorption process. The data analysis shows that a logarithmic particle size distribution describes the density profile of the thin adsorbed maghemite layer. The size distribution in the nanoparticle solution determined by small angle X-ray scattering shows an average particle size which is similar to that found for the adsorbed film. The formed magehemite film exhibits a rather high stability.  相似文献   

9.
10.
Summary The adsorption of ethylene-vinyl acetate copolymer which consists of two different adsorption energy segments from solution onto glass sphere was studied. The adsorption depends on molecular weight and the constant obtained by application ofUllman's equation is decreased with the increase of molecular weight. The molecular weight dependence of adsorption suggests that the polymer chain adsorbed at solution-solid interface consist of sequences and loop chains. The relation between maximum adsorption and area occupied with adsorbed polymer chain from various solution was discussed, and the solvent dependence of maximum adsorption was explained in the difference of polymer solubility.
Zusammenfassung Die Adsorption von Äthylen-Vinylacetat-Copolymeren, die aus zwei unterschiedlichen Segmenten hinsichtlich der Adsorptionsenergie bestehen, aus der Lösung an Glaskugeln wurde untersucht. Die Adsorption hängt vom Molekulargewicht ab; und die Konstante , erhalten durch Anwendung derUllmanschen Gleichung, nimmt mit der Zunahme des Molekulargewichts ab. Die Molekulargewichts-Abhängigkeit der Adsorption läßt vermuten, daß die Polymerketten, in der Grenzfläche adsorbiert, aus Sequenzen und Schleifen bestehen. Die Beziehungen zwischen maximaler Adsorption und mit adsorbierter Polymerketten besetzter Fläche aus verschiedener Lösung wird diskutiert und die Lösungsmittel-Abhängigkeit der maximalen Adsorption wurde aus dem Unterschied der Polymer-Löslichkeit erklärt.


With 7 figures and 3 tables  相似文献   

11.
The adsorption of cinnamaldehyde from aqueous 1 M KCl has been determined by means of differential capacity, zero charge potential and maximum surface tension measurements. A Frumkin isotherm is obeyed with α = 2.4, corresponding to repulsive interaction, and Γs= 3.5 × 10?10 mol cm?2, which is independent of potential in the range ?350/?750 mV. The standard free energy of adsorption is a quadratic function of potential with maximum adsorption occurring at the potential of zero charge. The interaction of the molecular dipole with the electric field and the partial charge transfer between the electrode and the adsorbate are considered.  相似文献   

12.
13.
14.
The aim of the present work was to design functionalized lipidic membranes that can selectively interact with lanthanide ions at the interface and to exploit the interaction between membranes induced by this molecular-recognition process with a view to building up self-assembled vesicles or controlling the permeability of the membrane to lanthanide ions. Amphiphilic molecules bearing a beta-diketone unit as head group were synthesized and incorporated into phospholipidic vesicles. Binding of Eu(III) ions to the amphiphilic ligand can lead to formation of a complex involving ligands of the same vesicle membrane (intravesicular complex) or of two different vesicles (intervesicular complex). The effect of Eu(III) ions on vesicle behavior was studied by complementary techniques such as fluorimetry, light scattering, and electron microscopy. The formation of an intravesicular luminescent Eu/beta-diketone ligand (1/2) complex was demonstrated. The linear increase in the binding constant with increasing concentration of ligands in the membrane revealed a cooperative effect of the ligands distributed in the vesicle membrane. The luminescence of this complex can be exploited to monitor the kinetics of complexation at the interface of the vesicles, as well as ion transport across the membrane. By encapsulation of 2,6-dipicolinic acid (DPA) as a competing ligand which forms a luminescent Eu/DPA complex, the kinetics of ion transport across the membrane could be followed. These functional vesicles were shown to be an efficient system for the selective transport of Eu(III) ions across a membrane with assistance by beta-diketone ligands.  相似文献   

15.
Summary The adsorption of Aerosol OT from aqueous solution on to six adsorbates of known specific surface area but of varying surface properties has been measured. For the polar surfaces adsorption corresponding to a double layer was found to occur. The first layer is adsorbed with the surfactant polar heads directed to polar sites on the surface while the second layer is held by interchain cohesion. With the non-polar carbon surface of Sterling MT adsorption is physical and reaches a completely packed monolayer. A maximum in the adsorption was found only for the adsorption of Aerosol from water on to calcium phosphate and carbonized coal.With 4 figures  相似文献   

16.
Dietary fat has long been recognized as an essential component in nutrition. However, most of the lipids present in food need to be converted into more bioavailable compounds. Lipases have a crucial role in converting triglycerides into more polar lipids with increased water solubility and a tendency to form micelles. However, the surface active molecules generated by lipolysis may have a detrimental effect on the interfacial biocatalysis. In the present work we evaluate the interfacial properties of lipase-generated molecules during fat digestion. By using the pendant drop technique we assessed the amphiphilic character of fatty acid salts, monoglycerides, and diglycerides as individual surfactants and mixtures. The experimental results are fitted with a mathematical model, which assists in the determination of the interfacial properties of the surfactants. Our results show that monoglycerides have considerably higher interfacial activity than fatty acid salts and diglycerides. Therefore, the interface will soon be dominated by monoglycerides. The pH dependency of the interfacial activity of fatty acids is also explored in the current work. We believe that our results can contribute to a better understanding of the complex interfacial phenomena occurring during fat digestion.  相似文献   

17.
Interfacial tersion measurements of mercury in contact with aqueous solutions of tetraphenylphosphonium chloride indicate the existence, at negative rational potentials, of an ordered monolayer of tetraphenylphosphonium ions, either as such or as its neutral salt. The analysis clearly illustrates the limits to the molecular information obtainable from electrical measurements.  相似文献   

18.
Adsorption of randomly branched polyelectrolytes, "hairy" particles and internally structured macromolecules, collectively denoted as heterogeneously charged nanoparticles, on charged surfaces is important in many technological and natural processes. In this paper, we will focus on (1) the charge regulation of both the nanoparticle and the surface and (2) the surface complexation between the particle functional groups and the surface sites and will theoretically study the adsorption using the extended surface complexation approach. The model explicitly considers the electrochemical potential of a nanoparticle with an average (smeared-out) structure and charge both in bulk solution and on the surface to obtain the equilibrium adsorption. The chemical heterogeneity of the particle is described by a distribution of the protonation constant. Detailed analysis of the chemical potential of the adsorbed nanoparticle reveals that the pH and salt dependence of the adsorption can be largely explained by the balance between an energy gain resulting from the particle and surface charge regulation and the surface complexation and an energy loss from the unfavorable interparticle electrostatic repulsion close to the surface. This conclusion is also supported by the strong impacts that the chemical heterogeneity of the particle functional groups, the magnitude of the surface complexation, the number of the functional groups, and the size of the particle have on the adsorption.  相似文献   

19.
Trimesic acid (benzene-1, 3,5-tri-carboxylic acid; TMA) can in principle form two-dimensional hydrogen-bonded hexagonal networks in which central holes of the network have net diameters of 14 Å. Although such holes would be expected to be natural locations for guest molecules, non-catenated single networks have not been found in any of the crystals containing TMA studied in the last sixteen years. Instead, anhydrous -TMA, TMA pentaiodide (TMA.I5) and (so-called) -TMA have mutually triply-catenated structures in which triplets of networks are interlaced [3,4,5], while the hydrated complexes are based on non-catenated nets of composition TMA.H2O [6]. We have now found conditions under which single networks are preserved without catenation, the cavities being occupied by guests such as n-tetradecane, n-heptanol, n-octanol, n-decanol, octene, cyclooctane and isooctane. The structures of 2TMA. n-tetradecane and 2TMA. isooctane have been solved and refined to R=13.0% and R=11.3%, respectively, disorder of the guest molecules having prevented further refinement of the room-temperature data. Determination of the crystal structures of the other complexes, which are isostructural with 2TMA. n-tetradecane, is now in progress. We are also investigating other potential guests.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号