首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical method for determining 239Pu and 240Pu in marine sediment samples, which uses quadrupole ICP-MS, was developed in this work. A simple anion-exchange chromatography system was employed for the separation and purification of Pu from the sample matrix. A sufficient decontamination factor of 1.4×104 for U, which interferes with the determination of 239Pu, was achieved. High sensitivity Pu determination was obtained, which led to an extremely low concentration detection limit of ~8 fg/ml (0.019 mBq/ml for 239Pu; 0.071 mBq/ml for 240Pu) in a sample solution, or an absolute detection limit of 42 fg in a 5 ml sample solution, by using the shield torch technique. Analytical results for the determination of the 239+240Pu and the 240Pu/239Pu ratio in IAEA 368 (ocean sediment) reference material indicated that the accuracy of the method was satisfactory. The method developed was successfully applied to a study of Pu behavior in the sediments from Sagami Bay, Japan. The observed high 240Pu/239Pu ratio in the sediment core indicated that there was additional Pu input derived from close-in fallout in addition to the global fallout.  相似文献   

2.
Summary Studies on the environmental behavior of plutonium in the marine environment require an analytical method with high sensitivity and capability to provide the isotopic composition of Pu in marine samples. In this work, as part of our on-going project on Pu environmental behavior in the Pacific Ocean, a sector field ICP-MS method combined with an off-line anion-exchange chromatography system was optimized for the determination of Pu and its atomic ratio of 240Pu/239Pu in sediment core samples. Using a conical concentric nebulizer and 150-second counting time, we were able to lower the detection limit of Pu down to 0.35 fg. The mass discrimination effect was evaluated using a mixed Pu isotope standard solution with certified a 240Pu/239Pu isotope ratio (NBS-947). The overall performance of the analytical method was validated by the determination of Pu and its isotope composition in an ocean sediment reference material (IAEA-368). Both the 239+240Pu activity and 240Pu/239Pu atomic ratio were found to be in good agreement with the certified and/or literature values. As an important application, we employed the analytical method to investigate the vertical profiles of 239+240Pu activity and 240Pu/239Pu atomic ratio in sediment cores in the Sea of Okhotsk and the NW Pacific. It was found that the Bikini close-in fallout Pu could be transported as far as the Sea of Okhotsk. The results provided evidence to support our hypothesis on the oceanic current transportation of Bikini close-in fallout Pu in the NW Pacific and its marginal seas.  相似文献   

3.
Summary A new high-sensitivity plutonium bioassay program employing thermal ionization mass spectrometry (TIMS) has been developed to monitor Savannah River Site employees for intakes of PuO2. The U.S. Department of Energy requires bioassay laboratories which have the ability to detect a 100 mRem, 50-year committed effective dose equivalent (CEDE) intake of radioactive material. For PuO2, traditional alpha-spectrometry methods are not sensitive enough to meet this specification. To comply with this requirement, a radiochemical TIMS method was developed to determine Pu in urine bioassay samples. Four radiochemical separation steps were used to purify Pu from urine to ensure samples were free from matrix effects that interfere with TIMS analysis. These included precipitation, ion-extraction chromatography, electrodeposition, and ion-exchange chromatography. A batch of reagent blanks determined the detection limit for this method was 0.59 fg 239Pu/l (1.3 µBq 239Pu/l). The 239Pu concentration was also measured in 20 urine blank samples to determine the minimum 239Pu concentration that would indicate an occupational intake. A Probit plot was constructed for the results and the 99 th percentile of the urine blanks showed that the minimum 239Pu concentration that would indicate an uptake was 2.4 fg/l (5.5 µBq/l).  相似文献   

4.
Summary The present study focused on analyzing samples of bones, livers and kidneys of European white-tailed eagles (Halia?tus albicilla) and lesser-spotted eagle (Aquila pomarina). Bone samples were collected for both species, from 7 and 2 individuals, respectively, whereas liver and kidney samples for white-tailed eagle species only, 2 and 1 individuals, respectively. The samples were analyzed for the presence of gamma-emitters and then for 90Sr, 238Pu, 239+240Pu and 241Am. The applied radiochemical method is presented. Activity concentration in ashen bones (600 °C) for 90Sr ranged from 4.6±1.2 to 31.0±2.5 Bq/kg, for 239+240Pu from <1.7 to 21±4 mBq/kg, for 238Pu from <2.7 to 6.5±1.3 mBq/kg and for 241Am from <1.2 to 6.5±4.4 mBq/kg. Relatively high 239+240Pu activity concentration of 78±9 mBq/kg (for fresh weight) was recorded in a single kidney sample. The liver samples showed activities of magnitude at least one order lower. No clear correlations were found between the activities of different radionuclides.  相似文献   

5.
A method is described for the determination of plutonium concentration in the presence of a bulk of other impurities by isotope dilution mass spectrometry /IDMS/ using239Pu as a spike. The method involves the addition of239Pu spike / 90 atom%/ to samples with239Pu / 70 atom%/ and vice versa. After ensuring chemical exchange between the sample and the spike isotopes, plutonium is purified by conventional anion exchange procedure in 7M HNO3 medium.239Pu/240Pu atom ratio in the purified spiked sample is determined with high precision /better than 0.1%/ using a thermal ionization mass spectrometer. Concentration of plutonium in the sample is calculated from the changes in239Pu/240Pu atom ratio in the spiked mixture. Results obtained on different plutonium samples using239Pu as a spike are compared with those obtained by the use of242Pu spike. Precision and accuracy comparable to those achieved by using242Pu are demonstrated. The method provides an alternative in the event of non-availability of enriched242Pu or244Pu required in IDMS of plutonium and at the same time, offers certain advantages over the use of242Pu or244Pu spike.  相似文献   

6.
Salmon (Oncorhynchus keta) samples were collected on the Pacific coast of Japan and analyzed for their239+240Pu and137Cs concentrations in six places, i.e., muscle, viscera, gill, gonad, skin and spine. The239+240Pu concentrations in muscle ranged from 0.07 to 0.14 mBq/kg (wet) and had the lowest value among the six regions. The mean239+240Pu concentrations in viscera, gonad and spine were more than 1 mBq/kg (wet_ while those in muscle and skin were one order of magnitude lower. The largest amounts of239+240Pu were accumulated in gonad. The239+240Pu/137Cs activity ratios in all positions were lower than that of the global fallout ratio of 0.022, suggesting that137Cs could be accumulated with greater ease than239+240Pu in all positions and ratios of uptake differed remarkably from position to position. The total accumulations of239+240Pu and137Cs in salmon were 1.32 and 328 mBq/individual, respectively.  相似文献   

7.
Summary The present paper describes a new analytical method for determining the 240Pu/239Pu isotopic ratio and 238Pu/239+240Pu α -activity ratio in seawater, both of which are important parameters for determining Pu sources in the ocean. Plutonium isotopes were preconcentrated from a large volume of seawater (4700-10800 liter) by solid phase extraction using MnO2-impregnated fibers and eluted into 3M HCl. After the elution, the Pu species of all oxidation states were converted to Pu(IV) using NaNO2, purified by solvent extraction using thenoyltrifluoroacetone (TTA)-benzene, and concentrated in 5 ml of 0.2M HNO2. The 240Pu/239Pu and 238Pu/239+240Pu ratios in the 5-ml final solution were determined by inductively coupled plasma-mass spectrometry (ICP-MS) and α-spectrometry, respectively. A pg level of Pu, which was a sufficiently large amount for the determination, was obtained by the solid phase extraction. Through the redox conversion and solvent extraction, the Pu species, such as Pu(III), Pu(IV) and Pu(VI), were collected at a high recovery of 96±2% (n=3) despite the presence of large amounts of Mn, and interfering 238U (3.3 μg. l-1in seawater) was effectively removed with a decontamination factor of 1.7·107. The accuracy of the method for the 240Pu/239Pu ratio was verified using reference materials of seawater and a terrestrial soil sample. The present technique was applied to the determination of the 240Pu/239Pu and 238Pu/239+240Pu ratios in coastal and oceanic water.  相似文献   

8.
High resolution-type ICP-MS was applied to the analysis of 239Pu and 240Pu in soil samples. The detection limit of Pu was about 0.001 pg.ml-1 (ppt) in the sample solution or about 0.0005 pg in a total sample. This method was used to determine concentrations of Pu and its isotopic ratios in several soil samples collected from different areas in Japan. Concentrations of Pu in surface soils collected from forests were significantly higher than those in soils from agricultural fields. The 240Pu/239Pu atom ratios observed were usually 0.17-0.19, except for one very low ratio (0.037) found in the Nishiyama area (Nagasaki).  相似文献   

9.
Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10−4 ng kg−1 for 241Pu to 10 ng kg−1 for 239Pu), and therefore the measurement of 238Pu, 239Pu, 240Pu, 241Pu and 242Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which 238U and 241Am have been removed, and which is suitable for the direct and simultaneous measurement of 239Pu, 240Pu, 241Pu and 242Pu by SF-ICP-MS.  相似文献   

10.
Seawater samples were collected from the East China Sea continental shelf and analyzed for 239+240Pu activities. The vertical profiles of 239+240Pu had a similarity for all three stations in the East China Sea. 239+240Pu concentrations were low in the surface layer (3-4 mBq/m3) and increased gradually with depth to become high in the near-bottom layer (7-10 mBq/m3). 239+240Pu concentrations in seawater and the concentrations of suspended particles showed almost the same vertical profiles in the East China Sea continental shelf. The maximum value of 239+240Pu found in the near-bottom layer may be due to the contribution of Pu-rich suspended particles.  相似文献   

11.
A highly selective method is described for the determination of 239,240Pu and 238Pu in soils by extraction chromatography with Microthene-710/tri-n-octylamine. The method is especially suitable for volcanic soils containing high concentrations of natural alpha radionuclides (Th, Po, U, etc.). The detection limit by α-spectrometry is 2.2 mBq kg?1 for 50-g soil samples. The average chemical yield, obtained by adding 242Pu as the internal standard, is 69.5 ± 17.1%. An IAEA reference soil was analyzed, with a relative error of 6.7% for 239Pu. The concentration of 2239,240Pu in thirteen analyzed soils and sediments ranged from 26.6 to 429 mBq kg?1.  相似文献   

12.
Summary As a follow up to the initial 1998 intercomparison study, a second study was initiated in 2001 as part of the ongoing evaluation of the capabilities of various ultra-sensitive methods to analyze 239Pu in urine samples. The initial study1 was sponsored by the Department of Energy, Office of International Health Programs to evaluate and validate new technologies that may supersede the existing fission tract analysis (FTA) method for the analysis of 239Pu in urine at the µBq/l level. The ultra-sensitive techniques evaluated in the second study included accelerator mass spectrometry (AMS) by LLNL, thermal ionization mass spectrometry (TIMS) by LANL and FTA by the University of Utah. Only the results for the mass spectrometric methods will be presented. For the second study, the testing levels were approximately 4, 9, 29 and 56 µBq of 239Pu per liter of synthetic urine. Each test sample also contained 240Pu at a 240Pu/239Pu atom ratio of ~0.15 and natural uranium at a concentration of 50 µBq/ml. From the results of the two studies, it can be inferred that the best performance at the µBq level is more laboratory specific than method specific. The second study demonstrated that LANL-TIMS and LLNL-AMS had essentially the same quantification level for both isotopes. Study results for bias and precision and acceptable performance compared to ANSI N13.30 and ANSI N42.22 have been compiled.  相似文献   

13.
The on-site laboratory (OSL) at Rokkasho Reprocessing Plant (RRP) is jointly operated by the Japanese authority Nuclear Material Control Centre and the International Atomic Energy Agency (IAEA) and provides, together with the Nuclear Material Laboratory (NML) at Seibersdorf, analytical services to the IAEA’s inspectorate. OSL deals with a variety of samples typical to a reprocessing plant including pure product solutions of uranium and plutonium but also mixed U/Pu solutions originating from various stages of the chemical process. For a significant proportion of the samples, the requirement on measurement accuracy and precision from the Inspectorate makes the use of thermal ionization mass spectrometry (TIMS) indispensible. Until recently, all samples intended for TIMS had to undergo time-consuming U/Pu separation before isotope dilution measurement. The need for rapid reporting of analytical results for certain safeguards samples evoked the idea of performing TIMS measurements without prior U/Pu separation for mixed U/Pu products as they are obtained from the PUREX process at RRP. For this purpose, a systematic study was initiated to probe the figure of merits and limitations of conducting TIMS analyses on mixed U/Pu samples and, in particular, whether the accuracy and precision of the main ratios of interest, n(235U)/n(238U) and n(240Pu)/n(239Pu), are influenced by the presence of larger amounts of the other element. A series of synthetic mixtures with U/Pu ratios ranging from 1:10 up to 100:1 were prepared and measured in both laboratories—OSL and NML—using ThermoFisher TRITON multi-collector TIMS instruments. For the n(235U)/n(238U) ratio, interference due to 238Pu was observed which can be significant depending on the U/Pu ratio and the 238Pu abundance. However, for the n(240Pu)/n(239Pu) ratio, which is of premier importance for safeguarding RRP, no significant interference arising from the concomitant U was detected independently of enrichment. Even in samples with an excess of U (U/Pu ratio of 100:1), compliance with International Target Values (ITV2010) was demonstrated for n(240Pu)/n(239Pu) results with a relative difference to certified not exceeding 0.01 %.  相似文献   

14.
A radiochemical procedure is described for the simultaneous determination of238Pu,239+240Pu,241Pu,241Am,242Cm,244Cm,89Sr, and90Sr in vegetation samples. The method was applied for the determination of these, radionuclides in grass, collected near Munich after the fallout from the reactor accident at Chernobyl, USSR. The specific activities observed were (in Bq kg–1 dry weight):238Pu, 0.077;239+240Pu, 0.15;241Pu, 3.9;241Am, 0.031;242Cm, 3.0;244Cm, 0.008;89Sr, 2000;90Sr, 99.  相似文献   

15.
Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.  相似文献   

16.
A radiochemical method is described for the determination of238Pu,239(240)Pu and241Am in a single soil sample. Plutonium is separated from a HNO3 leaching solution by a Microthene-TNOA column; amcricium is coprecipitated by oxalic acid, decontaminated from polonium by a TNOA-column in HCl medium, separated from the rare earth elements by a Microthene-HDEHP column, eluted with a 0.07M DTPA+1M lactic acid solution and finally purified by a PMBP-TOPO extraction. The method supplies a good decontamination of Am and Pu from natural alpha emitters; starting from 50 g soil, the average yields were 75.1±13.4% for plutonium and 57.7±10.8% for Am.239(240)Pu,238Pu and241Am concentrations (mBq/kg) in three different kinds of soil were the following: 255, 10.4, 81.3 (uncultivated soils); 236, 11.6, 76.7 (cultivated soils); 46, 1.9, 19.8 (river sediment). The average ratios238Pu to239(240)Pu and241Am to239(240)Pu were 0.044 and 0.350, respectively.  相似文献   

17.
Summary Accelerator mass spectrometry (AMS) is a sensitive and robust technique typically applied to the quantification of long-lived radioisotopes in samples too small to be decay-counted. AMS is characterized by a high rejection of interferences and a low susceptibility to matrix components, which reduce the demands on sample preparation chemistry. At Lawrence Livermore National Laboratory (LLNL), Center for Accelerator Mass Spectrometry (CAMS), we have developed an AMS capability for the measurement of actinide concentrations and isotopic ratios. To date, this capability has been primarily devoted to the measurement of 239Pu and 240Pu in bioassay and environmental samples including soils, sediments, waters, and human urine. For these analyses, a known amount of 242Pu is added to the samples as a reference isotope for normalization. Measurements of standard and intercomparison samples have shown that quantification is accurate and precise from at least 106 to 1011 atoms/sample. Recently, the ratios of 240Pu, 241Pu, 242Pu, and +Pu to intrinsic 239Pu have been successfully measured in soil samples from nuclear test sites. In addition, initial measurements of U and Np isotopes have yielded results consistent with the Pu measurements with respect to sensitivity, accuracy, precision, and linear range.  相似文献   

18.
Plutonium and other actinides were determined in human autopsy tissues of occupationally exposed workers who were registrants of the United States Transuranium and Uranium Registries (USTUR). In this study, Pu was purified and isolated from Am, U and Th, after drying and wet-ashing of the tissues, and the addition of238Pu as a radiotracer. After electrodeposition onto vanadium planchets the239+240Pu activity was determined by alpha-spectrometry. A fission track method was developed to determine239Pu in the presence of238Pu and240Pu, using LexanTM polycarbonate detectors. Combining the two techniques allowed the determination of the240Pu/239Pu activity and atom ratios. Data from selected USTUR cases are presented.  相似文献   

19.
The concentrations of238Pu and239, 240Pu were determined in 12 sediment samples collected from the bed of the Romanian Danube river and Black Sea coast during June–September 1994. After the sample material has been properly prepared and242Pu tracer added, plutonium was separated from americium and curium by anion exchange. After electrodeposition on stainless steel discs the elements were counted with an -spectrometry system with silicon surface-barrier detectors. The239, 240Pu concentrations range between 150 and 800 mBq kg–1 dry, while the238Pu concentrations rise up to max 150 mBq kg–1 dry. Although the chemical yields are rather low (51%) we appreciate the results as valuable since they report for the first time the distribution of the plutonium contamination along the Danube river and the Black Sea coast-Romanian sector.  相似文献   

20.
In nuclear safeguards, precise and accurate isotopic analyses are needed for two major elements from the nuclear fuel cycle: uranium and plutonium. This can be achieved by Isotope Dilution Mass Spectrometry (IDMS), which is one of the most reliable analytical techniques for the determination of plutonium amount content to a high level of accuracy. In order to achieve reliable isotope measurements isotopic reference materials with certified amount of plutonium and isotopic composition are required. At the Institute for Reference Materials and Measurements (IRMM) various plutonium spike reference materials for isotopes 239Pu, 240Pu, 242Pu and 244Pu are available. This enabled the setup of an inter-calibration campaign inter-linking selected plutonium spikes on a metrological basis applying state-of-the-art measurement procedures. The aim of this campaign is threefold: firstly to perform measurements on selected plutonium spike isotopic reference materials for quality control purposes, secondly to verify the amount content and the isotopic composition of the recently produced IRMM-1027m large sized dried (LSD) spikes and thirdly to demonstrate IRMM’s measurement capabilities for plutonium analysis via external quality tools. The obtained results using various spike isotopic reference materials will be presented and discussed in this paper. The measurement uncertainties of the IDMS results were calculated according to the guide to the expression of uncertainty in measurement (GUM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号