首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
曾和平 《中国化学》2002,20(10):1007-1011
Photoinduced electron transfer(PET) processes between C60-C6H8SO and Tetrathiafulvalene(TTF) have been studied by nanosecond laser photolysis.Quantrm yiekds(φet) and rate constants of electron transfer(ket) from TTF to excited triplet state of[60] fullerene-containing cyclic sulphoxide in benzonitrile(BN) have been evaluated by observing the transient absorption bands in the NIR region.With the decay of excited triplet state of [60]fullerene-containing cyclic suplhoxide,the rise of radical anion of [60]fullerene-containing cyclic sulphoxinde is observed.  相似文献   

2.
He‐Rng Zeng 《中国化学》2002,20(12):1546-1551
The photoinduced electron‐transfer reaction of N, N, N', N'‐tetra‐(p‐methylphenyl)‐4,4'‐diamino‐1,1'‐diphenyl ether (TPDAE) and fullerenes (C60/C70) by nanosecond laser flash photolysis occurred in benzonitrile. Transient absorption spectral measurements were carried out during 532 nm laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAE. The electron transfer from the TPDAE to excited triplet state of the fullerenes (C60/C70) quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60/C70) in benzonitrile have been evaluated by observing the transient absorption bands in the near‐IR region where the excited triplet state, radical anion of fullerenes (C60/C70) and radical cations of TPDAE are expected to appear.  相似文献   

3.
A series of IrIII complexes, based on 1,10‐phenanthroline featuring aryl acetylene chromophores, were prepared and investigated as triplet photosensitizers. The complexes were synthesized by Sonogashira cross‐coupling reactions using a “chemistry‐on‐the‐complex” method. The absorption properties and luminescence lifetimes were successfully tuned by controlling the number and type of light‐harvesting group. Intense UV/Vis absorption was observed for the IrIII complexes with two light‐harvesting groups at the 3‐ and 8‐positions of the phenanthroline. The asymmetric IrIII complex (with a triphenylamine (TPA) and a pyrene moiety attached) exhibited the longest lifetime. Red emission was observed for all the complexes in deaerated solutions at room temperature. Their emission at low temperature (77 K) and nanosecond time‐resolved transient difference absorption spectra revealed the origin of their triplet excited states. The singlet‐oxygen (1O2) sensitization and triplet‐triplet annihilation (TTA)‐based upconversion were explored. Highly efficient TTA upconversion (ΦUC=28.1 %) and 1O2 sensitization (ΦΔ=97.0 %) were achieved for the asymmetric IrIII complex, which showed intense absorption in the visible region (λabs=482 nm, ?=50900 m ?1 cm?1) and had a long‐lived triplet excited state (53.3 μs at RT).  相似文献   

4.
Photoinduced electron transfer (ET) between C60 and porphyrin (P) in a new polymer containing porphyrin, poly(p-phenylenevinylene), and pendant fullerene units has been investigated by nanosecond transient absorption and phosphorescence spectroscopy. Compared to the physically doping material systems, binding porphyrin/C60 through chemical bonds in a polymer detains the formation of the triplet states of porphyrins and C60. The formation of intermediate charge transfer state (CSS) of P+-C60 ? was observed, which led to the delayed formation of triplet states of porphyrins and C60. The reduced opto-electronic properties, such as optical limiting performance, were also observed, which resulted from the delayed formation of triplet states. The results presented in this article are significant in understanding the complicated spectral characteristics of the triplet state and charge transfer of the porphyrin and C60 complexes, and are therefore related to the controllable performance of the new materials in applications.  相似文献   

5.
To harvest energy from the near‐infrared (near‐IR) and infrared (IR) regions of the electromagnetic spectrum, which constitutes nearly 70 % of the solar radiation, there is a great demand for near‐IR and IR light‐absorbing sensitizers that are capable of undergoing ultrafast photoinduced electron transfer when connected to a suitable electron acceptor. Towards achieving this goal, in the present study, we report multistep syntheses of dyads derived from structurally modified BF2‐chelated azadipyrromethene (ADP; to extend absorption and emission into the near‐IR region) and fullerene as electron‐donor and electron‐acceptor entities, respectively. The newly synthesized dyads were fully characterized based on optical absorbance, fluorescence, geometry optimization, and electrochemical studies. The established energy level diagram revealed the possibility of electron transfer either from the singlet excited near‐IR sensitizer or singlet excited fullerene. Femtosecond and nanosecond transient absorption studies were performed to gather evidence of excited state electron transfer and to evaluate the kinetics of charge separation and charge recombination processes. These studies revealed the occurrence of ultrafast photoinduced electron transfer leading to charge stabilization in the dyads, and populating the triplet states of ADP, benzanulated‐ADP and benzanulated thiophene‐ADP in the respective dyads, and triplet state of C60 in the case of BF2‐chelated dipyrromethene derived dyad during charge recombination. The present findings reveal that these sensitizers are suitable for harvesting light energy from the near‐IR region of the solar spectrum and for building fast‐responding optoelectronic devices operating under near‐IR radiation input.  相似文献   

6.
曾和平 《中国化学》2002,20(10):1025-1030
In search of new systems with a photoexcited redox pair which exhibits a strong and stable photoinduced absorption band to understand the photophyscial and photochemical properties of electron transfer between fullernes (C60/C70) and organic donor[N,N,N’,N’-tetra(p-methylphenyl)-4,4’-diamino-1,1’-diphenyl sulphide(TPDAS)],we studied characteristic absorption spectra in the near-IR region obtained from 532nm nanosecond laser flash photolysis of a mixture of the fullerenes (C60/C70) and TPDAS in polar solvents.When fullerenes (C60/C70)were photoexcithed,the rise of the radical anion of fullerenes (C60/C70)with the rapid decay of their excited triplet states were observed in benzonitrile.It can be deduced that the electron transfer reaction does take place from TPDAS to excithed triplet state of rullerens(C60/C70).The rate consants(ket)and quantum yiekls(φet) of this process have been also evaluated.  相似文献   

7.
Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives (B-1, B-2 and B-3, which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C60 was used as the complementary hydrogen bonding module (C-1), in which the C60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references (B-1-Me, B-2-Me and B-3-Me), which are unable to form strong H-bonds with C-1. Triple H-bonds are formed between each Bodipy antenna (B-1, B-2 and B-3) and the C60 module (C-1). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C60 module (for assembly B-1·C-1), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1). Intra-assembly forward–backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet–triplet annihilation upconversion.  相似文献   

8.
Large substituent effects were observed in the rates and reaction mechanisms of the photochemical rearrangement of N-arylaza-[60]fulleroid 1 to N-arylaziridino-[60]fullerene 2, in which the difference of the rates between the fastest and the slowest (>2160-fold) was attained only by changing the aryl group from 1-naphthyl to 2-naphthyl. The decreasing order of the reaction rates in relation to the substituents was 1-naphthyl (1b) > 1-pyrenyl (1d) > phenyl (1a) > 2-naphthyl (1c). The reactions proceeded via triplet states of the fulleroids and a triplet sensitization of the reaction by rearranged product 2b was observed in the case of 1b. The slow reactions of 1a,c were interpretated by the participation of charge-separated species in the excited triplet states, which was supported by nanosecond transient absorption spectra.  相似文献   

9.
A novel photosynthetic‐antenna–reaction‐center model compound, comprised of BF2‐chelated dipyrromethene (BODIPY) as an energy‐harvesting antenna, zinc porphyrin (ZnP) as the primary electron donor, ferrocene (Fc) as a hole‐shifting agent, and phenylimidazole‐functionalized fulleropyrrolidine (C60Im) as an electron acceptor, has been synthesized and characterized. Optical absorption and emission, computational structure optimization, and cyclic voltammetry studies were systematically performed to establish the role of each entity in the multistep photochemical reactions. The energy‐level diagram established from optical and redox data helped identifying different photochemical events. Selective excitation of BODIPY resulted in efficient singlet energy transfer to the ZnP entity. Ultrafast electron transfer from the 1ZnP* (formed either as a result of singlet–singlet energy transfer or direct excitation) or 1C60* of the coordinated fullerene resulting into the formation of the Fc–(C60 . ?Im:ZnP . +)–BODIPY radical ion pair was witnessed by femtosecond transient absorption studies. Subsequent hole migration to the ferrocene entity resulted in the Fc+–(C60 . +Im:ZnP)–BODIPY radical ion pair that persisted for 7–15 μs, depending upon the solvent conditions and contributions from the triplet excited states of ZnP and ImC60, as revealed by the nanosecond transient spectral studies. Better utilization of light energy in generating the long‐lived charge‐separated state with the help of the present “antenna–reaction‐center” model system has been successfully demonstrated.  相似文献   

10.
王婷婷  曾和平 《中国化学》2006,24(2):224-230
N-Methyl-2-(4-N,N-diphenylaminophenyl)fulleropyrrolidine and N-methyl-2-(4-di-p-tolylaminophenyl)fulleropyrrolidine were synthesized via the 1,3-dipolar cycloaddition reactions under microwave irradiation. The molecular structures were identified and characterized by MS, UV-Vis, FT-IR, ^1H NMR and fluorescence spectra. Photoinduced intramolecular electron transfer process from C60 moiety to triphenylamine moiety have been studied by nanosecond laser flash photolysis. The optimized structure and the distribution of the frontier molecular orbitals for C60-TPA were obtained by using DFT method at B3LYP/6-31G(d) level. The results indicated that the intramolecular photoinduced electron transfer could occur in these compounds, which were in excellent agreement with the nanosecond transient absorption spectra observed experimentally in polar solvent. The electronic spectrum of the compound C60-TPA was studied by ZINDO method on the basis of the optimized geometrics, which was essentially consistent with experimental values.  相似文献   

11.
Oxoverdazyl (Vz) radical units were covalently linked to the naphthalenediimide (NDI) chromophore to study the effect of the radical on the photophysical properties, especially the radical enhanced intersystem crossing (REISC), which is a promising approach to develop heavy-atom-free triplet photosensitizers. Rigid phenyl or ethynylphenyl linkers between the two moieties were used, thus REISC and formation of doublet (D1, total spin quantum number S=1/2) and quartet states (Q1, S=3/2) are anticipated. The photophysical properties of the dyads were studied with steady-state and femtosecond/nanosecond transient absorption (TA) spectroscopies and DFT computations. Femtosecond transient absorption spectra show a fast electron transfer (<150 fs), and ISC (ca. 1.4–1.85 ps) is induced by charge recombination (CR, in toluene). Nanosecond transient absorption spectra demonstrated a biexponential decay of the triplet state of the NDI moiety. The fast component (lifetime: 50 ns; population ratio: 80 %) is assigned to the D1→D0 decay, and the slow decay component (2.0 μs; 20 %) to the Q1→D0 ISC. DFT computations indicated ferromagnetic interactions between the radical and chromophore (J=0.07–0.13 eV). Reversible formation of the radical anion of the NDI moiety by photoreduction of the radical-NDI dyads in the presence of sacrificial electron donor triethanolamine (TEOA) is achieved. This work is useful for design of new triplet photosensitizers based on the REISC effect.  相似文献   

12.
A high potential donor–acceptor dyad composed of zinc porphyrin bearing three meso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.  相似文献   

13.
A heteroleptic bis(tributylphosphine) platinum(II)‐alkynyl complex ( Pt‐1 ) showing broadband visible‐light absorption was prepared. Two different visible‐light‐absorbing ligands, that is, ethynylated boron‐dipyrromethene (BODIPY) and a functionalized naphthalene diimide (NDI) were used in the molecule. Two reference complexes, Pt‐2 and Pt‐3 , which contain only the NDI or BODIPY ligand, respectively, were also prepared. The coordinated BODIPY ligand shows absorption at 503 nm and fluorescence at 516 nm, whereas the coordinated NDI ligand absorbs at 594 nm; the spectral overlap between the two ligands ensures intramolecular resonance energy transfer in Pt‐1 , with BODIPY as the singlet energy donor and NDI as the energy acceptor. The complex shows strong absorption in the region 450 nm–640 nm, with molar absorption coefficient up to 88 000 M ?1 cm?1. Long‐lived triplet excited states lifetimes were observed for Pt‐1 – Pt‐3 (36.9 μs, 28.3 μs, and 818.6 μs, respectively). Singlet and triplet energy transfer processes were studied by the fluorescence/phosphorescence excitation spectra, steady‐state and time‐resolved UV/Vis absorption and luminescence spectra, as well as nanosecond time‐resolved transient difference absorption spectra. A triplet‐state equilibrium was observed for Pt‐1 . The complexes were used as triplet photosensitizers for triplet–triplet annihilation upconversion, with upconversion quantum yields up to 18.4 % being observed for Pt‐1 .  相似文献   

14.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

15.
An efficient functional mimic of the photosynthetic antenna‐reaction center has been designed and synthesized. The model contains a near‐infrared‐absorbing aza‐boron‐dipyrromethene (ADP) that is connected to a monostyryl boron‐dipyrromethene (BDP) by a click reaction and to a fullerene (C60) using the Prato reaction. The intramolecular photoinduced energy and electron‐transfer processes of this triad as well as the corresponding dyads BDP‐ADP and ADP‐C60 have been studied with steady‐state and time‐resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge‐separated states. Such calculations show that electron transfer from the singlet excited ADP (1ADP*) to C60 yielding ADP.+‐C60.? is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from 1BDP* to ADP in the dyad BDP‐ADP and electron transfer from 1ADP* to C60 in the dyad ADP‐C60. Sequential energy and electron transfer have also been clearly observed in the triad BDP‐ADP‐C60. By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈1011 s?1). The dynamics of electron transfer through 1ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge‐separation process from 1ADP* to C60 has been detected, which gives the relatively long‐lived BDP‐ADP.+C60.? with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge‐separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP‐ADP and ADP‐C60, and the triad BDP‐ADP‐C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems.  相似文献   

16.
Understanding the excited‐state properties of thioflavin‐T (ThT) has been of immense importance, because of its efficient amyloid‐sensing ability related to neurodegenerative disorders. The excited‐state dynamics of ThT is studied by using sub‐pico‐ and nanosecond time‐resolved transient absorption techniques as well as density functional theory (DFT)/time‐dependent DFT calculations. Barrierless twisting around the central C?C bond between two aromatic moieties is the dominant process that contributes to the ultrafast dynamics of the S1 state. The spectroscopic properties of the intramolecular charge‐transfer state are characterized for the first time. The energetics of the S0 and S1 states has also been correlated with the experimentally observed spectroscopic parameters and structural dynamics. A longer‐lived transient state populated with a very low yield has been characterized as the triplet state.  相似文献   

17.
Perylenebisimide ( PBI )–anthracene ( AN ) donor–acceptor dyads/triad were prepared to investigate spin–orbit charge-transfer intersystem crossing (SOCT-ISC). Molecular conformation was controlled by connecting PBI units to the 2- or 9-position of the AN moiety. Steady-state, time-resolved transient absorption and emission spectroscopy revealed that chromophore orientation, electronic coupling, and dihedral angle between donor and acceptor exert a significant effect on the photophysical property. The dyad PBI-9-AN with orthogonal geometry shows weak ground-state coupling and efficient intersystem crossing (ISC, ΦΔ=86 %) as compared with PBI-2-AN (ΦΔ=57 %), which has a more coplanar geometry. By nanosecond transient absorption spectroscopy, a long-lived PBI localized triplet state was observed (τT=139 μs). Time-resolved EPR spectroscopy demonstrated that the electron spin polarization pattern of the triplet state is sensitive to the geometry and number of AN units attached to PBI . Reversible and stepwise generation of near-IR-absorbing PBI radical anion ( PBI−⋅ ) and dianion ( PBI2− ) was observed on photoexcitation in the presence of triethanolamine, and it was confirmed that selective photoexcitation at the near-IR absorption bands of PBI.− is unable to produce PBI2− .  相似文献   

18.
C60–bodipy triads and tetrads based on the energy‐funneling effect that show broadband absorption in the visible region have been prepared as novel triplet photosensitizers. The new photosensitizers contain two or three different light‐harvesting antennae associated with different absorption wavelengths, resulting in a broad absorption band (450–650 nm). The panchromatic excitation energy harvested by the bodipy moieties is funneled into a spin converter (C60), thus ensuring intersystem crossing and population of the triplet state. Nanosecond time‐resolved transient absorption and spin density analysis indicated that the T1 state is localized on either C60 or the antennae, depending on the T1 energy levels of the two entities. The antenna‐localized T1 state shows a longer lifetime (τT=132.9 μs) than the C60‐localized T1 state (ca. 27.4 μs). We found that the C60 triads and tetrads can be used as dual functional photocatalysts, that is, singlet oxygen (1O2) and superoxide radical anion (O2 . ?) photosensitizers. In the photooxidation of naphthol to juglone, the 1O2 photosensitizing ability of the C60 triad is a factor of 8.9 greater than the conventional triplet photosensitizers tetraphenylporphyrin and methylene blue. The C60 dyads and triads were also used as photocatalysts for O2 . ?‐mediated aerobic oxidation of aromatic boronic acids to produce phenols. The reaction times were greatly reduced compared with when [Ru(bpy)3Cl2] was used as photocatalyst. Our study of triplet photosensitizers has shown that broadband absorption in the visible spectral region and long‐lived triplet excited states can be useful for the design of new heavy‐atom‐free organic triplet photosensitizers and for the application of these triplet photosensitizers in photo‐organocatalysis.  相似文献   

19.
Spin–orbit charge-transfer intersystem crossing (SOCT-ISC) is useful for the preparation of heavy atom-free triplet photosensitisers (PSs). Herein, a series of perylene-Bodipy compact electron donor/acceptor dyads showing efficient SOCT-ISC is prepared. The photophysical properties of the dyads were studied with steady-state and time-resolved spectroscopies. Efficient triplet state formation (quantum yield ΦT=60 %) was observed, with a triplet state lifetime (τT=436 μs) much longer than that accessed with the conventional heavy atom effect (τT=62 μs). The SOCT-ISC mechanism was unambiguously confirmed by direct excitation of the charge transfer (CT) absorption band by using nanosecond transient absorption spectroscopy and time-resolved electron paramagnetic resonance (TREPR) spectroscopy. The factors affecting the SOCT-ISC efficiency include the geometry, the potential energy surface of the torsion, the spin density for the atoms of the linker, solvent polarity, and the energy matching of the 1CT/3LE states. Remarkably, these heavy atom-free triplet PSs were demonstrated as a new type of efficient photodynamic therapy (PDT) reagents (phototoxicity, EC50=75 nm ), with a negligible dark toxicity (EC50=78.1 μm ) compared with the conventional heavy atom PSs (dark toxicity, EC50=6.0 μm, light toxicity, EC50=4.0 nm ). This study provides in-depth understanding of the SOCT-ISC, unveils the design principles of triplet PSs based on SOCT-ISC, and underlines their application as a new generation of potent PDT reagents.  相似文献   

20.
Oligophenylenevinylene (OPV)‐terminated phenylenevinylene dendrons G1 – G4 with one, two, four, and eight “side‐arms”, respectively, were prepared and attached to C60 by a 1,3‐dipolar cycloaddition of azomethine ylides generated in situ from dendritic aldehydes and N‐methylglycine. The relative electronic absorption of the OPV moiety increases progressively along the fullerodendrimer family C60G1 – C60G4 , reaching a 99:1 ratio for C60G4 (antenna effect). UV/Vis and near‐IR luminescence and transient absorption spectroscopy was used to elucidate photoinduced energy and electron transfer in C60G1 – C60G4 as a function of OPV moiety size and solvent polarity (toluene, dichloromethane, benzonitrile), taking into account the fact that the free‐energy change for electron transfer is the same along the series owing to the invariability of the donor–acceptor couple. Regardless of solvent, all the fullerodendrimers exhibit ultrafast OPV→C60 singlet energy transfer. In CH2Cl2, the OPV→C60 electron transfer from the lowest fullerene singlet level (1C60*) is slightly exergonic (ΔGCS≈0.07 eV), but is observed, to an increasing extent, only in the largest systems C60G2 – C60G4 with lower activation barriers for electron transfer. This effect has been related to a decrease of the reorganization energy upon enlargement of the molecular architecture. Structural factors are also at the origin of an unprecedented OPV→C60 electron transfer observed for C60G3 and C60G4 in apolar toluene, whereas in benzonitrile, electron transfer occurs in all cases. Monitoring of the lowest fullerene triplet state by sensitized singlet oxygen luminescence and transient absorption spectroscopy shows that this level is populated through intersystem crossing and is not involved in photoinduced electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号