首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction mechanism of carbonyl oxide with hydroxyl radical was investigated by using CASSCF, B3LYP, QCISD, CASPT2, and CCSD(T) theoretical approaches with the 6-311+G(d,p), 6-311+G(2df, 2p), and aug-cc-pVTZ basis sets. This reaction involves the formation of H2CO + HO2 radical in a process that is computed to be exothermic by 57 kcal/mol. However, the reaction mechanism is very complex and begins with the formation of a pre-reactive hydrogen-bonded complex and follows by the addition of HO radical to the carbon atom of H2COO, forming the intermediate peroxy-radical H2C(OO)OH before producing formaldehyde and hydroperoxy radical. Our calculations predict that both the pre-reactive hydrogen-bonded complex and the transition state of the addition process lie energetically below the enthalpy of the separate reactants (DeltaH(298K) = -6.1 and -2.5 kcal/mol, respectively) and the formation of the H2C(OO)OH adduct is exothermic by about 74 kcal/mol. Beyond this addition process, further reaction mechanisms have also been investigated, which involve the abstraction of a hydrogen of carbonyl oxide by HO radical, but the computed activation barriers suggest that they will not contribute to the gas-phase reaction of H2COO + HO.  相似文献   

2.
The rearrangement of aminoethanol catalyzed by ethanolamine ammonia lyase is investigated by computational means employing DFT (B3LYP/6-31G) and ab initio molecular orbital theory (QCISD/cc-pVDZ). The study aims at providing a detailed account on various crucial aspects, in particular a distinction between a direct intramolecular migration of the partially protonated NH(2) group vs elimination of NH(4)(+). Three mechanistic scenarios were explored: (i) According to the calculations, irrespective of the nature of the protonating species, intramolecular migration of the NH(3) group is energetically less demanding than elimination of NH(4)(+). However, all computed activation enthalpies exceed the experimentally derived activation enthalpy (15 kcal/mol) associated with the rate-determining step, i.e., the hydrogen abstraction from the 5'-deoxyadenosine by the product radical. For example, when imidazole is used as a model system for His interacting with the NH(3) group of the substrate, the activation enthalpy for the migration process amounts to 27.4 kcal/mol. If acetic acid is employed to mimic Asp or Glu, the activation enthalpy is somewhat lower, being equal to 24.2 kcal/mol. (ii) For a partial deprotonation of the substrate 2 at the OH group, the rearrangement mechanism consists of the dissociation of an NH(2) radical from C(2) and its association at C(1) atom. For all investigated proton acceptors (i.e., OH(-), HCOO(-), CH(3)COO(-), CH(2)NH, imidazole), the activation enthalpy for the dissociation step also exceeds 15 kcal/mol. Typical data are 20.2 kcal/mol for Ac(-) and 23.8 kcal/mol for imidazole. (iii) However, in a synergistic action of partial protonation of the NH(2) group and partial deprotonation of the OH group by the two conceivable catalytic auxiliaries Asp/Glu and His, the activation enthalpy computed is compatible with the experimental data. For imidazole and acetate as model systems, the activation enthalpy is equal to 13.7 kcal/mol. This synergistic action of the two catalytic groups is expected to take place in a physiologically realistic pH range of 6-9.5, and the present computational findings may help to further characterize the yet unknown structural details of the ethanolamine ammonia lyase's active site.  相似文献   

3.
The (13)C NMR chemical shifts for alpha-D-lyxofuranose, alpha-D-lyxopyranose (1)C(4), alpha-D-lyxopyranose (4)C(1), alpha-D-glucopyranose (4)C(1), and alpha-D-glucofuranose have been studied at ab initio and density-functional theory levels using TZVP quality basis set. The methods were tested by calculating the nuclear magnetic shieldings for tetramethylsilane (TMS) at different levels of theory using large basis sets. Test calculations on the monosaccharides showed B3LYP(TZVP) and BP86(TZVP) to be cost-efficient levels of theory for calculation of NMR chemical shifts of carbohydrates. The accuracy of the molecular structures and chemical shifts calculated at the B3LYP(TZVP) level is comparable to those obtained at the MP2(TZVP) level. Solvent effects were considered by surrounding the saccharides by water molecules and also by employing a continuum solvent model. None of the applied methods to consider solvent effects was successful. The B3LYP(TZVP) and MP2(TZVP)(13)C NMR chemical shift calculations yielded without solvent and rovibrational corrections an average deviation of 5.4 ppm and 5.0 ppm between calculated and measured shifts. A closer agreement between calculated and measured chemical shifts can be obtained by using a reference compound that is structurally reminiscent of saccharides such as neat methanol. An accurate shielding reference for carbohydrates can be constructed by adding an empirical constant shift to the calculated chemical shifts, deduced from comparisons of B3LYP(TZVP) or BP86(TZVP) and measured chemical shifts of monosaccharides. The systematic deviation of about 3 ppm for O(1)H chemical shifts can be designed to hydrogen bonding, whereas solvent effects on the (1)H NMR chemical shifts of C(1)H were found to be small. At the B3LYP(TZVP) level, the barrier for the torsional motion of the hydroxyl group at C(6) in alpha-D-glucofuranose was calculated to 7.5 kcal mol(-1). The torsional displacement was found to introduce large changes of up to 10 ppm to the (13)C NMR chemical shifts yielding uncertainties of about +/-2 ppm in the chemical shifts.  相似文献   

4.
The structures and energies of the carbocations C 4H 7 (+) and C 5H 9 (+) were calculated using the ab initio method. The (13)C NMR chemical shifts of the carbocations were calculated using the GIAO-CCSD(T) method. The pisigma-delocalized bisected cyclopropylcarbinyl cation, 1 and nonclassical bicyclobutonium ion, 2 were found to be the minima for C 4H 7 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level the structure 2 is 0.4 kcal/mol more stable than the structure 1. The (13)C NMR chemical shifts of 1 and 2 were calculated by the GIAO-CCSD(T) method. Based on relative energies and (13)C NMR chemical shift calculations, an equilibrium involving the 1 and 2 in superacid solutions is most likely responsible for the experimentally observed (13)C NMR chemical shifts, with the latter as the predominant equilibrating species. The alpha-methylcyclopropylcarbinyl cation, 4, and nonclassical bicyclobutonium ion, 5, were found to be the minima for C 5H 9 (+) at the MP2/cc-pVTZ level. At the MP4(SDTQ)/cc-pVTZ//MP2/cc-pVTZ + ZPE level ion 5 is 5.9 kcal/mol more stable than the structure 4. The calculated (13)C NMR chemical shifts of 5 agree rather well with the experimental values of C 5H 9 (+).  相似文献   

5.
The reactions between either a hydrogen atom or a hydroxyl radical and 5-methylcytosine (5-MeCyt) are studied by using the hybrid kinetic energy meta-GGA functional MPW1B95. *H atom and *OH radical addition to positions C5 and C6 of 5-MeCyt, or *OH radical induced H-abstraction from the C5 methyl group, are explored. All systems are optimized in bulk solvent. The data presented show that the barriers to reaction are very low: ca. 7 kcal/mol for the *H atom additions and 1 kcal/mol for the reactions involving the *OH radical. Thermodynamically, the two C6 radical adducts and the *H-abstraction product are the most stable ones. The proton hyperfine coupling constants (HFCC), computed at the IEFPCM/MPW1B95/6-311++G(2d,2p) level, agree well with B3LYP results and available experimental and theoretical data on related thymine and cytosine radicals.  相似文献   

6.
Photoacoustic signals from dilute ( approximately 30 mM) solutions of H2O2 were measured over the temperature range from 10 to 45 degrees C to obtain the reaction enthalpy and volume change for H2O2(aq) --> 2 OH(aq) from which we ultimately determined DeltafG degrees , DeltafH degrees and partial molal volume, v degrees , of OH (aq). We find DeltarH = 46.8 +/- 1.4 kcal/mol, which is 4 kcal/mol smaller than the gas-phase bond energy, and DeltaVr = 6.5 +/- 0.4 mL/mol. The v degrees for OH in water is 14.4 +/- 0.4 mL/ml: smaller than the v degrees of water. Using ab intio continuum theory, the hydration free energy is calculated to be -3.9 +/- 0.3 kcal/mol (for standard states in number density concentration units) by a novel approach devised to capture in the definition of the solute cavity the strength and specific interactions of the solute with a water solvent molecule. The shape of the cavity is defined by "rolling" a three-dimensional electron density isocontour of water on the ab initio water-OH minimum interaction surface. The value of the contour is selected to reproduce the volume of OH in water. We obtain for OH(aq): DeltafH degrees = -0.2 +/- 1.4 and DeltafG degrees = 5.8 +/- 0.4 kcal/mol that are in agreement with literature values. The results provide confidence in the pulsed PAC technique for measuring aqueous thermochemistry of radicals and open the way to obtaining thermochemistry for most radicals that can be formed by reaction of OH with aqueous substrates while advancing the field of continuum solvation theory toward ab initio-defined solute cavities.  相似文献   

7.
The rates of H/D exchange have been measured between (a) the activated olefins methyl methacrylate-d(5) and styrene-d(8), and (b) the Cr hydrides (eta(5)-C(5)Ph(5))Cr(CO)(3)H (2a), (eta(5)-C(5)Me(5))Cr(CO)(3)H (2b), and (eta(5)-C(5)H(5))Cr(CO)(3)H (2c). With a large excess of the deuterated olefin the first exchange goes to completion before subsequent exchanges begin, at a rate first order in olefin and in hydride. (Hydrogenation is insignificant except with styrene and CpCr(CO)(3)H; in most cases, the radicals arising from the first H. transfer are too hindered to abstract another H. .) Statistical corrections give the rate constants k(reinit) for H. transfer to the olefin from the hydride. With MMA, k(reinit) decreases substantially as the steric bulk of the hydride increases; with styrene, the steric bulk of the hydride has little effect. At longer times, the reaction of MMA or styrene with 2a gives the corresponding metalloradical 1a as termination depletes the concentration of the methyl isobutyryl radical 3 or the alpha-methylbenzyl radical 4; computer simulation of [1a] as f(t) gives an estimate of k(tr), the rate constant for H. transfer from 3 or 4 back to Cr. These rate constants imply a DeltaG (50 degrees C) of +11 kcal/mol for H. transfer from 2a to MMA, and a DeltaG (50 degrees C) of +10 kcal/mol for H. transfer from 2a to styrene. The CH(3)CN pK(a) of 2a, 11.7, implies a BDE for its Cr-H bond of 59.6 kcal/mol, and DFT calculations give 58.2 kcal/mol for the Cr-H bond in 2c. In combination the kinetic DeltaG values, the experimental BDE for 2a, and the calculated DeltaS values for H. transfer imply a C-H BDE of 45.6 kcal/mol for the methyl isobutyryl radical 3 (close to the DFT-calculated 49.5 kcal/mol), and a C-H BDE of 47.9 kcal/mol for the alpha-methylbenzyl radical 4 (close to the DFT-calculated 49.9 kcal/mol). A solvent cage model suggests 46.1 kcal/mol as the C-H BDE for the chain-carrying radical in MMA polymerization.  相似文献   

8.
The complete analysis of the complex (1)H NMR spectra of some monosubstituted cyclobutanes was achieved to give all the (1)H chemical shifts and (n)J(HH) (n = 2, 3 and 4) coupling constants in these molecules. The substituent chemical shifts of the substituents in the cyclobutane ring differ significantly from those in acyclic systems. For example, the OH and the NH(2) groups in cyclobutanol and cyclobutylamine produce a large shielding of the hydrogens of the opposite CH(2) group of the ring compared with little effect on the comparable methylene protons of butane. These effects and the other (1)H shifts in the cyclobutanes were modelled successfully in the CHARGE program. The RMS error (calculated vs observed shifts) for the 34 (1)H shifts recorded was 0.053 ppm. The conformational equilibrium in these compounds between the axial and the equatorial conformers was obtained by comparing the observed and the calculated (4)J(HH) couplings. These couplings in cyclobutanes, in contrast to the corresponding (3)J(HH) couplings, show a pronounced orientation dependence; (4)J(eq-eq) is ca 5 Hz and (4)J(ax-ax) ca 0 Hz. The couplings in the individual conformers were calculated at the B3LYP/EPR-III level. The conformer energy differences ΔG(ax-eq) vary from 1.1 kcal mol(-1) for OH to 0.2 kcal mol(-1) for the CH(2)OH substituent. The values of the conformer energy differences are compared with the previous IR data and the corresponding theoretical values from molecular mechanics (MM) and DFT theory. Generally, good agreement is observed although both the MM and the DFT calculations deviate significantly from the observed values for some substituents.  相似文献   

9.
Tetrahydropyran (THP) undergoes photodissociation on excitation with ArF laser at 193 nm, generating OH radical as one of the transient photoproducts. Laser-induced fluorescence technique is used to detect the nascent OH radical and measure its energy state distribution. The OH radical is formed mostly in the ground vibrational level (v"=0), with low rotational excitation. The rotational distribution of OH (v"=0,J) is characterized by a temperature of 433+/-31 K, corresponding to a rotational energy of 0.86+/-0.06 kcalmol. Two Lambda-doublet levels, 2Pi+(A') and 2Pi-(A"), and the two spin-orbit states, the 2Pi(3/2) and 2Pi(1/2), of OH are populated statistically for all rotational levels. The relative translational energy associated with the photoproducts in the OH channel is calculated to be 21.9+/-3.2 kcal mol(-1), from the Doppler-broadened linewidth, giving an ft value of approximately 43%, and most of the remaining 57% of the available energy is distributed in the internal modes of the other photofragment, C5H9. The observed distribution of the available energy is explained well, using a hybrid model of energy partitioning, with an exit barrier of 40 kcal mol(-1). The potential-energy surface of the reaction channel was mapped by ab initio molecular-orbital calculations. Based on experimental and theoretical results, a mechanism for OH formation is proposed. Electronically excited THP relaxes to the ground electronic state, and from there, a sequence of reactions takes place, generating OH. The proposed mechanism first involves C-O bond scission, followed by a 1,3 H atom migration to O atom, and finally, the C-OH bond cleavage giving OH.  相似文献   

10.
The change in (1)H NMR chemical shifts upon hydrogen bonding was investigated using both experimental and theoretical methods. The (1)H NMR spectra of a number of phenols were recorded in CDCl(3) and DMSO solvents. For phenol, 2- and 4-cyanophenol and 2-nitrophenol the OH chemical shifts were measured as a function of concentration in CDCl(3). The plots were all linear with concentration, the gradients varying from 0.940 (phenol) to 7.85 (4-cyanophenol) ppm/M because of competing inter- and intramolecular hydrogen bonding. Ab initio calculations of a model acetone/phenol system showed that the OH shielding was linear with the H...O=C distance (R) for R < 2.1 A with a shielding coefficient of - 7.8 ppm/A and proportional to cos(2)phi where phi is the H...O=C--C dihedral angle. Other geometrical parameters had little effect. It was also found that the nuclear shielding profile is unrelated to the hydrogen bonding energy profile. The dependence of the OH chemical shift on the pi density on the oxygen atom was determined as ca 40 ppm/pi electron. This factor is similar to that for NH but four times the value for sp(2) hybridized carbon atoms. The introduction of these effects into the CHARGE programme allowed the calculation of the (1)H chemical shifts of the compounds studied. The CHARGE calculations were compared with those from the ACD database and from GIAO calculations. The CHARGE calculations were more accurate than other calculations both when all the shifts were considered and also when the OH shifts were excluded. The calculations from the ACD and GIAO approaches were reasonable when the OH shifts were excluded but not as good when all the shifts were considered. The poor treatment of the OH shifts in the GIAO calculations is very likely due to the lack of explicit solvent effects in these calculations.  相似文献   

11.
The carboxyl proton chemical shifts of neat trimethylacetic acid and its solutions in cyclohexane have been measured as a function of temperature. Formation, at the melting point, of a carboxyl group satellite line on the low field side has been found. The intensity of this satellite line rises with decreasing temperature, whereas the intensity of the main line decreases. The chemical shifts of the monomer (δm = 4·9 ± 0·6 ppm) and dimers, the equilibrium constants, enthalpy (ΔH = ?(11·3 ± 0·6) kcal/mol) and entropy (ΔS = ?(13·5 ± 0·7) cal/mol. degree) changes have been calculated using the concentration dependence of the chemical shifts of trimethylacetic acid in cyclohexane solutions at various temperatures. The chemical shift of the satellite line has been shown to correspond to the chemical shift of the cyclic dimers of the acid.  相似文献   

12.
N_2H_4-CH_3OH氢键团簇体系的从头计算   总被引:2,自引:0,他引:2  
用从头计算法研究了 (N2 H4-CH3OH)氢键团簇体系。分别在HF/6 31G 和HF/6 31G 水平上对它们的中性和离子团簇进行几何全优化 ,得到了 3种中性混合团簇稳定构型和离子混合团簇稳定构型 ,并对其能量和稳定性进行了比较。讨论了 3种不同构型离子团簇可能的解离通道。给出了质子化混合团簇的稳定构型 ,并对其可能的解离通道进行了讨论。文中最后计算出N2 H4,CH3OH ,(N2 H4-CH3OH)团簇的质子亲和能 (PA) ,分别为 :2 0 6.7kcal/mol,1 78.3kcal/mol,2 2 7.5kcal/mol,其中质子亲和能PAcalc[N2 H4]与实验值PAexp[N2 H4]=2 0 4 .8kcal/mol符合得很好。  相似文献   

13.
The (1)H NMR spectra of a number of alcohols, diols and inositols are reported and assigned in CDCl(3), D(2)O and DMSO-d(6) (henceforth DMSO) solutions. These data were used to investigate the effects of the OH group on the (1)H chemical shifts in these molecules and also the effect of changing the solvent. Inspection of the (1)H chemical shifts of those alcohols which were soluble in both CDCl(3) and D(2)O shows that there is no difference in the chemical shifts in the two solvents, provided that the molecules exist in the same conformation in the two solvents. In contrast, DMSO gives rise to significant and specific solvation shifts. The (1)H chemical shifts of these compounds in the three solvents were analysed using the CHARGE model. This model incorporates the electric field, magnetic anisotropy and steric effects of the functional group for long-range protons together with functions for the calculation of the two- and three-bond effects. The long-range effect of the OH group was quantitatively explained without the inclusion of either the C--O bond anisotropy or the C--OH electric field. Differential beta and gamma effects for the 1,2-diol group needed to be included to obtain accurate chemical shift predictions. For DMSO solution the differential solvent shifts were calculated in CHARGE on the basis of a similar model, incorporating two-bond, three-bond and long-range effects. The analyses of the (1)H spectra of the inositols and their derivatives in D(2)O and DMSO solution also gave the ring (1)H,(1)H coupling constants and for DMSO solution the CH--OH couplings and OH chemical shifts. The (1)H,(1)H coupling constants were calculated in the CHARGE program by an extension of the cos(2)phi equation to include the orientation effects of electronegative atoms and the CH--OH couplings by a simple cos(2)phi equation. Comparison of the observed and calculated couplings confirmed the proposed conformations of myo-inositol, chiro-inositol, quebrachitol and allo-inositol. The OH chemical shifts were also calculated in the CHARGE program. Comparison of the observed and calculated OH chemical shifts and CH.OH couplings suggested the existence of intramolecular hydrogen bonding in a myo-inositol derivative.  相似文献   

14.
The adsorption of H(2)O and its dissociation products, O, H, and OH, on Ag(100) has been studied using an ab initio embedding method. Results at different sites (atop, bridge, and hollow) are presented. The four-fold hollow site is found to be the most stable adsorption site for O, H, and OH, and the calculated adsorption energies are 87.1, 42.7, and 76.2 kcal mol(-1), respectively. The adsorption energy of water at the atop and bridge sites is almost identical with values of 11.1 and 12.0 kcal mol(-1), respectively. The formation of adsorbed OH species by adsorption of water on oxygen-precovered Ag(100) is predicted to be exothermic by 36 kcal mol(-1).  相似文献   

15.
We have demonstrated the features of curve-structured phenalenyl chemistry, for the first time. A phenalenyl-fused corannulene anion has been designed by the annelation of a six-memberd ring across peri-positions of corannulene and generated as a stable species in a degassed solution. The 1H and 13C NMR spectra have shown the highly symmetrical structure and high-field shifts of protons and carbons at the asterisked positions in the chemical structure, indicating the occurrence of large negative charge densities at these positions. These results well agree with the HOMO picture and the electrostatic potential surface, demonstrating the phenalenyl anion-type electronic structure is retained in the curved-surface pi-system. The calculated bowl-inversion barrier of the anion (11.3 kcal/mol) is larger than that of corannulene (9.2 kcal/mol) because of peri-annelation of the corannulene skeleton. The calculations of the barriers of the neutral radical (12.6 kcal/mol), radical dianion (8.1 kcal/mol), and trianion (5.4 kcal/mol) of the phenalenyl-fused corannulene have exhibited a stepwise flattening of the curvature with increase in negative charge. Therefore, we have revealed that the bowl-inversion barrier of the anion is governed by the setoff of the peri-annelation and negative charge effects.  相似文献   

16.
The 1H chemical shifts of 124 compounds containing a variety of functional groups have been recorded in CDCl3 and DMSO-d6 (henceforth DMSO) solvents. The 1H solvent shift Delta delta = delta(DMSO) - delta(CDCl3) varies from -0.3 to +4.6 ppm. This solvent shift can be accurately predicted (rms error 0.05 ppm) using the charge model of alpha, beta, gamma and long-range contributions. The labile protons of alcohols, acids, amines and amides give both, the largest solvent shifts and the largest errors. The contributions for the various groups are tabulated and it is shown that for H.C.C.X gamma-effects (X = OH, NH, =O, NH.CO) there is a dihedral angle dependence of the gamma-effect. The group contributions are discussed in terms of the possible solvent-solute interactions. For protic hydrogens, hydrogen bonding is the dominant interaction, but for the remaining protons solvent anisotropy and electric field effects appear to be the major factors.  相似文献   

17.
Through the use of the Active Thermochemical Tables approach, the best currently available enthalpy of formation of HO2 has been obtained as delta(f)H(o)298 (HO2) = 2.94 +/- 0.06 kcal mol(-1) (3.64 +/- 0.06 kcal mol(-1) at 0 K). The related enthalpy of formation of the positive ion, HO2+, within the stationary electron convention is delta(f)H(o)298 (HO2+) = 264.71 +/- 0.14 kcal mol(-1) (265.41 +/- 0.14 kcal mol(-1) at 0 K), while that for the negative ion, HO2- (within the same convention), is delta(f)H(o)298 (HO2-) = -21.86 +/- 0.11 kcal mol(-1) (-21.22 +/- 0.11 kcal mol(-1) at 0 K). The related proton affinity of molecular oxygen is PA298(O2) = 100.98 +/- 0.14 kcal mol(-1) (99.81 +/- 0.14 kcal mol(-1) at 0 K), while the gas-phase acidity of H2O2 is delta(acid)G(o)298 (H2O2) = 369.08 +/- 0.11 kcal mol(-1), with the corresponding enthalpy of deprotonation of H2O2 of delta(acid)H(o)298 (H2O2) = 376.27 +/- 0.11 kcal mol(-1) (375.02 +/- 0.11 kcal mol(-1) at 0 K). In addition, a further improved enthalpy of formation of OH is briefly outlined, delta(f)H(o)298 (OH) = 8.93 +/- 0.03 kcal mol(-1) (8.87 +/- 0.03 kcal mol(-1) at 0 K), together with new and more accurate enthalpies of formation of NO, delta(f)H(o)298 (NO) = 21.76 +/- 0.02 kcal mol(-1) (21.64 +/- 0.02 kcal mol(-1) at 0 K) and NO2, delta(f)H(o)298 (NO2) = 8.12 +/- 0.02 kcal mol(-1) (8.79 +/- 0.02 kcal mol(-1) at 0 K), as well as H(2)O(2) in the gas phase, delta(f)H(o)298 (H2O2) = -32.45 +/- 0.04 kcal mol(-1) (-31.01 +/- 0.04 kcal mol(-1) at 0 K). The new thermochemistry of HO2, together with other arguments given in the present work, suggests that the previous equilibrium constant for NO + HO2 --> OH + NO2 was underestimated by a factor of approximately 2, implicating that the OH + NO2 rate was overestimated by the same factor. This point is experimentally explored in the companion paper of Srinivasan et al. (next paper in this issue).  相似文献   

18.
The tautomerism and dimerization of 4(3H)-pyrimidinone (4(3H)Pyr) in carbon tetrachloride (CCl4) and chloroform (CHCl3) solutions were investigated using IR spectroscopy and quantum chemical calculations. The observed IR spectra in the NH and OH stretching regions clearly revealed the predominance of the keto tautomer in both solvent systems. The enol form only exists in a very small proportion in the CCl4 solution. The tautomeric constant for the two monomers KT[OH/NH] = 0.012 and DeltaE = 2.62 kcal/mol were estimated at 25 degrees C. This result was supported by the self-consistent reaction field/polarizable continuum (SCRF/PCM) calculation at the MP4(full, SDQ)/aug-cc-pVDZ level, which predicted DeltaE = 3.06 kcal/mol in CCl4. In the C=O stretching region, two bands were observed, suggesting the coexistence of two keto structures at equilibrium. The calculated IR spectra indicated that the bands at 1711 and 1675 cm(-1) arise from the keto monomer and keto-keto (KK) ring dimer, respectively. At elevated temperature, the populations of both the keto and enol monomers increased for the CCl4 solution. The present study revealed that the keto <--> enol tautomerization does not occur in the isolated monomer molecule. The double proton transfer (DPT) reaction in the KK ring dimer presumably plays a substantial role in the population increase of the enol monomer. To our knowledge, this may be the first observation of the tautomerization in a model base pair via the temperature-induced ground-state DPT reaction under a nonpolar liquid environment reported so far. This tautomerism can serve as a mimic circumstance for the spontaneous mutations induced by proton transfer in the DNA base pairs.  相似文献   

19.
The 2-azaphenalenyl radical 2 has been synthesized and characterized by ESR spectroscopy. Variable-temperature ESR measurements were carried out on both the phenalenyl (1) and the 2-azaphenalenyl (2) radicals. The phenalenyl radical 1 has the known propensity to dimerize at temperatures below 20 degrees C, but unexpectedly less so than originally reported. The first experimental measurement of bond dissociation enthalpy for the dimerization of the phenalenyl radical 1 was obtained in CCl(4) (11.34 +/- 0.11 kcal/mol) and toluene (9.8 +/- 0.7 kcal/mol). The 2-azaphenalenyl radical 2 does not show a propensity to dimerize over the measurable temperature range (220-330 K), but does so in the presence of Cu(hfac)(2) (hfac = hexafluoroacetylacetonate). The latter complex was characterized by X-ray crystallography.  相似文献   

20.
A theoretical study on the structures, relative energies, isomerization reactions and fragmentation pathways of the cysteine radical cation, [NH(2)CH(CH(2)SH)COOH].+, is reported. Hybrid density functional theory (B3LYP) has been used in conjunction with the 6-311++G(d,p) basis set. The isomer at the global minimum, Captodative-1, has the structure NH(2)C.(CH(2)SH)C(OH)(2)+; the stability of this ion is attributed to the captodative effect in which the NH(2) functions as a powerful pi-electron donor and C(OH)(2)+ as a powerful pi-electron acceptor. Ion Distonic-S-1, H(3)N(+)CH(CH(2)S.)COOH, in which the radical is formally situated on the S atom, is higher in enthalpy (DeltaH degrees (0)) than Captodative-1 by 6.1 kcal mol(-1), but is lower in enthalpy than another isomer Distonic-C-1, H(3)N(+)C.(CH(2)SH)COOH, by 8.2 kcal mol(-1). Isomerization of the canonical radical cation of cysteine, [H(2)NCH(CH(2)SH)COOH].+, (Canonical-1), to Captodative-1 has an enthalpy of activation of 25.8 kcal mol(-1), while the barrier against isomerization of Canonical-1 to Distonic-S-1 is only 9.6 kcal mol(-1). Two additional transient tautomers, one with the radical located at C(alpha) and the charge on SH(2), and the other a carboxy radical with the charge on NH(3), are reported. Plausible fragmentation pathways (losses of small molecules, CO(2), CH(2)S, H(2)S and NH(3), and neutral radicals COOH. , HSCH(2). and NH(2).) from Canonical-1 are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号