首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Fragmentation patterns of the molecular ions of 5-(methylsulfanyl)-1-[2-(vinyloxy)ethyl]-1H-pyrrol- 2-amines generated by electron impact (70 eV) and chemical ionization (methane as reagent gas) were studied for the first time. The electron impact mass spectra of all the examined compounds showed abundant molecular ions whose subsequent fragmentation followed three main pathways: elimination of EtS radical, elimination of methyl radical from the MeS group, and cleavage of the C-N and/or C-C bonds which is accompanied by rearrangement processes. Further decomposition of the [M - EtS]+ ion is determined by the structure of the amino group. The chemical ionization mass spectra displayed strong molecular and [M + H]+ ion peaks together with representative series of fragment ion peaks. Unlike electron impact, the main decomposition pathway under chemical ionization is elimination of methylsulfanyl radical from the [M + H]+ ion to give abundant [M + H — MeS]+ ion.  相似文献   

2.
Five differently substituted 1-(2-benzothiazolyl)-3,5-diphenyl formazans were studied by laser desorption ionization (LDI) and matrix assisted laser desorption/ionization (MALDI) mass spectrometry. The best explanation of the results is that the formazan molecules are photoionized to molecular radical ions, which then further react by ion-molecule reactions. Supporting this proposal was the abundant formation of [M − H]+ ions under LDI. These ions are not observed at all under either electron or chemical ionization. Under MALDI, the extent of the oxidation process is clearly dependent on the ability of the matrix to act as a reducing agent. With transition metals the formazans formed singly charged 1:2 metal:formazan complexes. The most stable electronic configuration of the complex determined the oxidation state of the metal regardless of its initial oxidation state. In some cases, this process also demanded a gas-phase reduction of the formazan. The ionization efficiency and affinity for complex formation depended on the substituent at the 3-phenyl group; both were increased by an electron donating substituent. The formazans were also tested as potential matrices for MALDI. Reasonable results were observed for several groups of compounds; however, only the piperazine ligands produced higher quality spectra with formazans than with common commercial matrices.  相似文献   

3.
Nanostructure-assisted laser desorption/ionization time-of-flight mass spectrometry (NALDI-TOFMS) has been developed recently as a matrix-free/surface-assisted alternative to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). The NALDI surface of silicon nanowires is already very effective for the analysis of small to medium sized, polar organic molecules in positive ion mode. The current study examined this technology for the analysis of several nonpolar organic, organometallic, and ionic compounds in positive ion mode, as well as a fluorinated compound and various acids in negative ion mode. NALDI data are compared and contrasted with MALDI data for the same compounds, and the higher sensitivity of NALDI is highlighted by the successful characterization of two porphyrins for a sample amount of 10 amol per spot.  相似文献   

4.
The mass spectrometric behavior of a) the tricarbonylchromium complexes of a series of aromatic hydrocarbons, b) the dimethyldiphenyl compounds of the Group IV elements (i.e., diphenylpropane, dimethyldiphenylsilane, etc.) and c) the mono- and bis-tricarbonylchromium complexes of these ligands under electron impact and chemical ionization conditions are reported. The MH+ ion is base peak for all of the simple arenetricarbonylchromium complexes using chemical ionization, whereas [M — 3 CO]+ or 52Cr+ dominate the spectra with electron impact ionization. The chemical ionization spectra of the series of Group IV element ligands do not exhibit signals in the molecular ion region, the base peak being [M — Ph]+. [M — CH3]+ is the electron impact base peak for each of the ligands except the lead-containing compound, for which the base peak is 208Pb+. The mono-tricarbonylchromium complexes yield chemical ionization molecular ion clusters, but their base peaks arise via fragmentation of the Group IV element—aromatic ring bonds. Electron impact ionization spectra of the mono complexes are characterized by losses of CO and the production of Cr+ ions, neither of which occurs with chemical ionization. For the series of bis-tricarbonylchromium complexes, an MH+ ion is prominent only in the chemical ionization spectrum of the diphenylpropane complex. The electron impact induced spectra of the bis-tricarbonylchromium complexes are similar to those of the mono-complexes in that loss of CO is a prominent feature.  相似文献   

5.
For the first time decomposition was investigated of 4-alkoxy-5-amino-3-methylthiophene-2-carbonitriles under the conditions of electronic (70 eV) and chemical (reagent gas methane) ionization. At the electronic ionization the compounds under study [except for 4-(1-ethoxyethoxy) and 4-(ferrocenylmethoxy) derivatives] form stable molecular ions that decompose mainly by the cleavage of an alkyl radical from the alkoxy-substituent. Further fragmentation of the arising ion [M–Alk]+ depends on the substituent nature in the amino group. In the mass spectrum of 4-(ferrocenylmethoxy)-substituted thiophene peaks of the ion [FcCH2]+ and its fragmentation products prevail. In the mass spectra of chemical ionization predominant peaks belong to ions M, [M + H]+ and [M + C2H5]+, and fragment ions are absent.  相似文献   

6.
A simple method was developed for the generation of cesium iodide (CsI) cluster ions up to m/z over 20,000 in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Calibration ions in both positive and negative ion modes can readily be generated from a single MALDI spot of CsI3 with 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile (DCTB) matrix. The major cluster ion series observed in the positive ion mode is [(CsI)nCs]+, and in the negative ion mode is [(CsI)nI]. In both cluster series, ions spread evenly every 259.81 units. The easy method described here for the production of CsI cluster ions should be useful for MALDI MS calibrations.  相似文献   

7.
The aim of this study was to investigate the utility of ion trap mass spectrometry (ITMS) in combination with the two desorption/ionization methods, electrospray (ESI) and atmospheric pressure matrix‐assisted laser desorption/ionization (AP‐MALDI), for the detection of antioxidants which are applied in lubricants. These experiments should form the base for future investigations of antioxidants in tribologically formed thin layers on the surface of frictional systems. Seventeen different antioxidants were selected out of the group of hindered phenolic and aromatic aminic compounds. Practically all antioxidants could be characterized by positive ion ESI‐ and AP‐MALDI‐ITMS, forming various types/species of molecular ions (e.g. [M]+ . , [M+H]+, [M+Na]+ or [M–2H+H]+). A few compounds could be analyzed by negative ion ESI‐MS, too, but none by negative ion AP‐MALDI‐MS. The influence of target materials in AP‐MALDI‐MS (gold‐ and titanium nitride (TiN)‐covered stainless steel, micro‐diamond‐covered hard metal, hand‐polished and sand‐blasted stainless steel targets) with respect to the molecular ion intensity and type of molecular ion of two selected antioxidants was evaluated. The surface properties are of particular interest because in friction tests different materials with different surface characteristics are used. However, the MS results indicate that optimal target surfaces have to be found for individual antioxidants in AP‐MALDI‐MS but in general smooth surfaces were superior to rough surfaces. Finally the gold‐covered stainless steel MALDI target provided the best mass spectra and was selected for all the antioxidants investigated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The spectra of five pharmacologically interesting substituted pyrazolo[1,2-a][1,2,4]triazole hydroiodides were measured under electron and chemical ionization. In the electron ionization spectra, in addition to the intense molecular ion peak of the free base (M+*), there was also a relatively intense molecular ion peak of the hydroiodide form, which is unusual since the hydroiodides are rarely so stable. The phenylimino and phenylamino substituents of the triazole ring affected the fragmentation behaviour of the compounds very much. The chemical ionization reagent gases used in this work were methane, isobutane, deuterated ammonia and acetone. In all the cases practically only [M+H]+ ions were observed, the only exception being acetone which also gave rise to intense [M+C2H3O]+ and [M+C3H7O]+ adduct ions. None of the reagent gases used was able to cause any fragmentation.  相似文献   

9.
By the method of nanostructure-assisted laser desorption/ionization (NALDI) analysis was performed of solid and liquid fractions of reaction products formed from 2-methylimidazole and 1,3-bis- (iodomethyl)-1,1,3,3-tetramethyldisiloxane. Basing on the data post-source decay of iodides major and minor products of reaction were identified that were registered as ions [M–I]+ and [M–I3]+.  相似文献   

10.
A series of meso-dialkyl, alkyl aryl and cycloalkyl calix(4)pyrroles (1-15) are studied under positive and negative ion electrospray ionization (ESI) conditions. The positive ion spectra show abundant [M + H](+) and [M + Na](+) ions and the negative ion spectra show the [M + Cl](-) (the Cl(-) ions from the solvent) and [M - H](-) ions. The collision induced dissociation (CID) spectra of [M + H](+), [M + Na](+), [M + Cl](-) and [M - H](-) ions are studied to understand their dissociation pathway and compared to that reported for M(+) under electron ionization (EI) conditions. The beta-cleavage process that was diagnostic to M(+) is absent in all the CID spectra of the ions studied under ESI. Dissociation of all the studied ions resulted in the fragment ions formed by sequential elimination of pyrrole (A) and/or dialkyl/alkyl aryl/cycloalkyl (B) groups involving hydrogen migration to pyrrole ring at each cleavage of A--B bond, which clearly reveals the arrangement of A and B groups in the calix(4)pyrroles. The source of hydrogen that migrates to pyrrole ring during A--B bond cleavage is investigated by the experiments on deuterated compounds and [M + D](+) ions; and confirmed that the hydrogen attached to pyrrole nitrogen, hydrogen on alpha-carbon of alkyl group and the H(+)/Na(+) ion that added during ESI process to generate [M + H](+)/[M + Na](+) ions involve in the migration. The yields of [M + Na](+) ions are found to be different for the isomeric meso-cycloalkyl compounds (cycloheptyl, and 2-, 3- and 4-methyl cyclohexyl) and for normal and N-confused calix(4)pyrroles. The isomeric methyl and 3-hydroxy/4-hydroxy phenyl calix(4)pyrroles show specific fragmentation pattern during the dissociation of their [M - H](-) ions.  相似文献   

11.
Electron ionization (EI) spectra and both positive and negative chemical ionization (CI) spectra have been obtained for four isoquinolinium ylides and two pyridinium ylides. Electron transfer reactions dominate the CI mass specra. The base peak in negative chemical ionization is the [M] ion, formed by electron capture. In the positive methane CI spectra the molecular ion, [M], is relatively more intense than [MH]+ showing electron transfer to be the main positive ionization process. In the positive ammonia CI spectra, proton transfer to give [MH]+ is the main ionization process, but electron transfer is also observed. The EI spectra show fragmentations in which the aromatic nitrogen moiety retains the charge and fragmentation is by loss of radicals or small neutral molecules from the side-chains. Radical driven reactions are proposed to explain these spectra.  相似文献   

12.
The ion [C3H5]+ generated in a chemical ionization source by a variety of methods, including protonation and charge exchange, exhibits a metastable peak for H2 loss which is two orders of magnitude weaker than that formed in an electron impact source. The stable [C3H5]+ ions generated by electron impact and chemical ionization undergo collision-induced dissociation to a comparable extent, both losing H2 by only one of the two competitive mechanisms observed for metastable ions. In contrast to the behavior of [C3H5]+, the molecular ions of p-substituted nitrobenzene, generated by charge exchange at high source pressure, yield composite metastable peaks for NO loss which are very similar in shape and intensity to those generated by electron impact. The contrasting behavior of the metastable ions extracted from high pressure ion sources in the two systems may be due to differences in the efficiencies of quenching of the ionic states responsible for fragmentation as metastable ions. It is noteworthy that the NO loss reactions require considerably lower activation energies than does the H2 loss reaction.  相似文献   

13.
The electron ionization mass spectrometric behaviour of ten 3-[2-(nitroxy)alkyl]-2H-1,3-benzoxazin-4-(3H)-one derivatives has been studied by means of metastable ion studies. By mass-analysed ion kinetic energy spectrometry of the related molecular ions, clear differences have been evidenced between the 5-methyl derivative and the other compounds, consisting of a highly favoured loss of NO2 radical. The same methodology has allowed easy characterization of isomeric compounds.  相似文献   

14.
Photodissociation at 193 nm (6. 43 eV) of the protonated substance-P, [M + H]+ ions, in a delayed extraction matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometer, is reported. The photofragment ion spectrum of substance P contains a complete series of a-type fragment ions and abundant side-chain cleavage ions. This article focuses on the utility of MALDI-TOF photodissociation for peptide sequencing.  相似文献   

15.
1,5‐Diaminonaphthalene (DAN) has been described as an interesting and effective matrix for matrix‐assisted laser desorption/ionization (MALDI) experiments in positive ion mode, being able to activate in‐source decomposition phenomena and, when employed for the analysis of proteins containing disulphide bridge(s), being able to activate reduction processes, resulting in disulphide bridge cleavage. The mechanisms of the DAN reactivity have been studied in detail, and the results indicate that the reduction properties of the matrix are of a radical nature. In the present study the structure of the reactive species produced by DAN, responsible for its reductive properties, has been investigated by accurate mass measurements and tandem mass spectrometry (MS/MS) experiments. Contrary to what is usually observed by laser irradiation of other MALDI matrices (with the sole formation of the MH+ ion of the matrix), DAN leads to the formation of odd‐electron molecular ions M+?. This can be rationalized by the occurrence of two photon pooling processes, due to the low ionization energy of DAN. Thus the M+? ion of DAN can be considered responsible for both analyte protonation and disulphide bond reduction and some mechanisms are proposed for this behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Electron-impact mass spectra of 3-halogenobenzanthrones (halogen X = Cl, Br, I) were measured and ionization efficiency curves and three kinds of linked-scan spectra were obtained for several fragment ions. The fundamental mechanisms of ionization and initial fragmentation were interpreted by the penetration length of an impacting electron or the density distribution on the molecular surface of a rejected electron and its orbital energy. The apparent ionization energy (IE) of a singly charged molecular ion seems to be the lower one of non-bonding electrons on O or X, and that of a doubly charged molecular ion the sum of three terms, the IE of non-bonding electron on O, that on X and the electrostatic repulsion between two positive charges. Two competing pathways of decomposition from the molecular ion M to an ion [M - CO,- X]+ were observed: one is the initial detachment of CO in chloro and bromo compounds and the other is the initial elimination of the iodine atom in the iodo compound. The sequence of these reactions was confirmed by metastable ion analysis with linked-scan spectra and the relative magnitudes of the appearance energies. They can be explained by the driving force of a localized positive charge or unpaired electron on a heteroatom.  相似文献   

17.
Electron impact mass spectra of alkyl 4-alkoxy-5-amino-3-methylthiophene-2-carboxylates were studied for the first time. These compounds, except for 4-(1-ethoxyethoxy) and 4-(ferrocenylmethoxy) derivatives, give rise to a stable molecular ion whose decomposition follows three pathways. The main fragmentation pathway of the molecular ion is elimination of alkyl radical from the 4-alkoxy group, the second pathway involves expulsion of alkoxy group from the ester moiety, and the third pathway is decomposition of the thiophene ring. The molecular ions of 4-(1-ethoxyethoxy)thiophenes decompose mainly via elimination of ethyl vinyl ether molecule with formation of [M–VinOEt]+ · odd-electron ion, and fragmentation of the latter follows general pathways. In the mass spectra of 4-(ferrocenylmethoxy)thiophenes the most abundant are ferrocenylmethyl ion with m/z 199 (I rel 100%) and fragment ions derived therefrom.  相似文献   

18.
Ionization efficiencies of cyclodextrins and their linear compounds in matrix-assisted laser desorption and ionisation (MALDI) analysis were compared, and differences in the ionization efficiencies of α- and β-cyclodextrins were also studied. The mass spectra showed a series of the [M+cation]+ ions but not the [M+H]+ ions. Alkali metal salts of Li+, Na+, K+, and Cs+ were used as the cationizing agents to enhance the ionization efficiency. Relative ion intensities of the ring compounds (α- and β-cyclodextrins) were much larger than those of the linear ones (maltohexaose and maltoheptaose), and the difference showed an increasing trend with the size of the alkali metal cation. β-Cyclodextrin had higher ionization efficiency than α-cyclodextrin and the difference increased by increasing the size of the alkali metal cation. It was also found that the ionization efficiency was affected by the counter anion of the salt. The higher ionization efficiencies of cyclodextrins were explained with the number of coordination sites and the binding energies.  相似文献   

19.
The chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methyl phosphonothiolate (VX) and many related degradation products produce poorly diagnostic electron ionization (EI) mass spectra by transmission quadrupole mass spectrometry. Thus, chemical ionization (CI) is often used for these analytes. In this work, pseudomolecular ([M+H]+) ion formation from self-chemical ionization (self-CI) was examined for four VX degradation products containing the diisopropylamine functional group. A person-portable toroidal ion trap mass spectrometer with a gas chromatographic inlet was used with EI, and both fixed-duration and feedback-controlled ionization time. With feedback-controlled ionization, ion cooling (reaction) times and ion formation target values were varied. Evidence for protonation of analytes was observed under all conditions, except for the largest analyte, bis(diisopropylaminoethyl)disulfide which yielded [M+H]+ ions only with increased fixed ionization or ion cooling times. Analysis of triethylamine-d15 provided evidence that [M+H]+ production was likely due to self-CI. Analysis of a degraded VX sample where lengthened ion storage and feedback-controlled ionization time were used resulted in detection of [M+H]+ ions for VX and several relevant degradation products. Dimer ions were also observed for two phosphonate compounds detected in this sample.  相似文献   

20.
Although matrix-assisted laser desorption/ionization (MALDI) was developed more than a decade ago and broad applications have been successfully demonstrated, detailed mechanism of MALDI is still not well understood. Two major models; namely photochemical ionization (PI) and cluster ionization (CI) mechanisms have been proposed to explain many of experimental results. With the photochemical ionization model, analyte ions are considered to be produced from a protonation or deprotonation process involving an analyte molecule colliding with a matrix ion in the gas phase. With the cluster ionization model, charged particles are desorbed with a strong photoabsorption by matrix molecules. Analyte ions are subsequently produced by desolvation of matrix from cluster ions. Nevertheless, many observations still cannot be explained by these two models. In this work, we consider a pseudo proton transfer process during crystallization as a primary mechanism for producing analyte ions in MALDI. We propose an energy transfer induced disproportionation (ETID) model to explain the observation of an equal amount of positive and negative ions produced in MALDI for large biomolecules. Some experimental results are used for comparisons of various models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号