首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Thirteen thiomorpholine-bearing compounds were designed and synthesized as dipeptidyl peptidase IV(DPP-IV) inhibitors, with natural and non-natural L-amino acids as the starting materials.Their structures were characterized by 1H NMR,13C NMR and HR-MS.The target compounds were screened for the DPP-IV inhibition,and the preliminary SAR result was obtained.Particularly, compounds 4c,4d and 4f with good DPP-IV inhibition in vitro were further evaluated through a mouse oral glucose tolerance test (OGTT).The preliminary result showed the potential value for further studies on those thiomorpholine-bearing compounds as DPP-IV inhibitors.  相似文献   

2.
Seven cyclohexane-bearing C-glucoside derivatives (7, 9, 12, 13 and 17-19) were designed and synthesized as SGLT2 inhibitors starting from a potent SGLT2 inhibitor we discovered in earlier work, (1S)-1-deoxy-1-[4-methoxy-3-(trans-n-propylcyclohexyl)methylphenyl]-D-glucose (1). The in vitro and in vivo biological activities were evaluated by hSGLT2/hSGLT1 inhibition and urinary glucose excretion (UGE), respectively. Among the synthesized compounds 12, the 6-deoxy derivative of 1 was the most active and selective SGLT2 inhibitor (IC50 = 1.4 nmol/L against hSGLT2; selectivity = 1576). Compound 12 was a potent SGLT2 inhibitor, which could induce more urinary glucose than 1 and dapagliflozin in UGE.  相似文献   

3.
Diamidine (A) was identified in our in vitro bio-assay as a possible inhibitor of ketol-acid reductoisomerase (KARI) from the ACD database search based on the known three-dimensional crystal structure of KARI. An investigation on interaction of A on KARI active sites, led to the design and synthesis of 15 novel monoamidines. Some of those showed better biological activity than A on rice KARI (in vitro) and in greenhouse herbicidal tests (in vivo). The structure-biological activity relationship was investigated, which provides valuable information to further study of potential KARI inhibitors.  相似文献   

4.
A series of 7-azaindol derivatives were designed based on the homologous 3D model of human acrosin.These compounds were synthesized and evaluated for their human acrosin inhibitory activities in vitro.Compounds 7a,7i,7j,7k and 7n showed highly inhibitory activity against human acrosin.The three-dimensional structure-activity relationship was investigated through a CoMFA model,which provided valuable information to further study of potential human acrosin inhibitors.  相似文献   

5.
Kinase enzymes play a key role in the development and progression of cancer. Inhibitors of deregulated kinases are effective small molecule anticancer drugs. The 2(1H)-pyrazinone heterocycle is a previously unexploited motif that can fulfil the structural requirements for ATP-competitive inhibition of kinases. Rapid solution-phase syntheses of novel 3,5- and 3,6-disubstituted-2(1H)-pyrazinones were developed through selective, sequential substitution of 2,5-dihalo-3-benzyloxypyrazine and 3,5-dihalo-2(1H)-pyrazinone intermediates. Palladium-catalysed cross-couplings and SNAr reactions were used to introduce substituents chosen on the basis of the calculated physicochemical properties of the target pyrazinones. Representative compounds demonstrated good solubility, kinase inhibitory activity and antiproliferative activity in human tumour cells, confirming the suitability of this chemical class as a kinase-focused library.  相似文献   

6.
Based on the similarities in the conformation of VS008 (N-(4-methylphenyl)-3-(tert-butyl)-1-(phenylmethyl)-1H-pyrazole-5-carboxamide) and BYIO6830 (N'-(3,5-dimethylbenzoyl)-N'-tert-butyl-5-methyl-2,3-dihydro-1,4-benzodioxine-6-carbohydrazide) bound to the active site of the EcR subunit of the ecdysone receptor (EcR)-ultraspiracle protein (USP) heterodimeric receptor, a series of new pyrazole amide derivatives were designed and synthesized. Their structures were confirmed by IR, 1H NMR, 13C NMR and elemental analysis. Results from a preliminary bioassay revealed that two of the pyrazole derivatives exhibited promising insecticidal activity. Specifically, compounds 6e and 6i exhibited good activity against Helicoverpa armigera (cotton bollworm) at low concentration. Symptoms displayed by tebufenozide-treated H. armigera were identical with those displayed by its treated counterpart. 6i showed the same poisoning symptoms as those of tebufenozide. In addition, results from molecular docking result indicated that the binding modes of 6e and 6i at the active site of the EcR subunit of the heterodimeric receptor were similar to that of the bound tebufenozide.  相似文献   

7.
8.
Design of irreversible inhibitors is an emerging and relatively less explored strategy for the design of protein kinase inhibitors. In this paper, we present a computational workflow that was specifically conceived to assist such design. The workflow takes the form of a multi-step procedure that includes: the creation of a database of already known reversible inhibitors of protein kinases, the selection of the most promising scaffolds that bind one or more desired kinase templates, the modification of the scaffolds by introduction of chemically reactive groups (suitable cysteine traps) and the final evaluation of the reversible and irreversible protein–ligand complexes with molecular dynamics simulations and binding free energy predictions. Most of these steps were automated. In order to prove that this is viable, the workflow was tested on a database of known inhibitors of ERK2, a protein kinase possessing a cysteine in the ATP site. The modeled ERK2-ligand complexes and the values of the estimated binding free energies of the putative ligands provide useful indicators of their aptitude to bind reversibly and irreversibly to the protein kinase. Moreover, the computational data are used to rank the ligands according to their computed binding free energies and their ability to bind specific protein residues in the reversible and irreversible complexes, thereby providing a useful decision-making tool for each step of the design. In this work we present the overall procedure and the first proof of concept results.  相似文献   

9.
The first biologically active non-planar analogues of the toxic anti-cancer agent, fascaplysin, have been produced; we present the design, synthesis and biological activity of three tryptamine derivatives.  相似文献   

10.
Background & objectiveEpidermal growth factor receptor (EGFR) signaling pathway is one of the promising and well-established targets for anticancer therapy. The objective of the present study was to identify new EGFR inhibitors using ligand and structure-based drug designing methods, followed by a synthesis of selected inhibitors and evaluation of their activity.MethodsA series of C-7-hydroxyproton substituted chrysin derivatives were virtually drawn to generate a small compound library that was screened using 3D QSAR model created from forty-two known EGFR tyrosine kinase inhibitors. Next, the obtained hits with fitness score ≥ 1.0 were subjected to molecular docking analysis. Based on the predicted activity and XP glide score, three EGFR inhibitors were synthesized and characterized using 1H-NMR, 13C-NMR and MS. Finally, comparative in vitro investigation of the biological activity of synthesized inhibitors was performed with that of the parent molecule, chrysin.ResultsThe data depicted a 3.2–fold enhanced cytotoxicity of chrysin derivative, CHM-04 against breast cancer cells as compared with chrysin as well as its binding with EGFR protein. Furthermore, the biological activity of CHM-04 was comparable to the standard EGFR inhibitor, AG1478 in increasing apoptosis and decreasing the migratory potential of triple-negative breast cancer cells as well as significantly lowering the mammosphere forming ability of breast cancer stem cells.ConclusionThe present study suggests CHM-04, an EGFR inhibitor possessing drug-like properties as a plausible therapeutic candidate against breast cancer.  相似文献   

11.
Ten new hybrids were designed and synthesized, their chemical structures were confirmed through spectral and elemental analysis. The new hybrids were screened against lung, breast and liver cancer cell lines (A549, MCF7 and Hep3B), in addition to normal fibroblast cells. Compound 13a was the most active and selective one on the lung cancer cell line (A549), its IC50 and S.I. values were 2.4 µM and 83.2, respectively. Compound 14b was active on MCF7 with the best selectivity towards this cell line. The new derivatives were screened for their inhibitory activity against COX enzymes, the obtained results revealed that compound 13a and 14b were more active inhibitors for COX-2 than celecoxib. This finding encourages us to consider COX-2 inhibitory activity as a proposed mechanism for their anticancer activity.  相似文献   

12.
Since the PI3K signaling pathway is the most commonly activated in human cancers,inhibition of PI3K is a promising approach to cancer therapy.In this study,a series of 2-methyl-5-nitrobenzeneacylhydrazones were designed and synthesized.All the new derivatives were tested by p110α enzymatic and Rh30 cellular assays.Further enzyme selectivity profiling proved that 6e and 7 were potential selective PI3K inhibitors.  相似文献   

13.
Selective carboxylesterase inhibitors are employed as modulators of hydrolytic metabolism of ester or amide-containing drugs. Using the Molecular Field Topology Analysis (MFTA), the models for the relationships between the structures and inhibitory activities of 5-halomethyl-2-aminothiazolines against acetylcholinesterase, butyrylcholinesterase, and carboxylesterase were built, the molecular design was performed, and a focused library of potentially active and selective carboxylesterase inhibitors was proposed.  相似文献   

14.
《中国化学快报》2023,34(2):107529
Heat shock protein 90 (Hsp90) is an appealing anticancer drug target that provoked a tremendous wave of investigations. Geldanamycin (GA) is the first identified Hsp90 inhibitor that exhibited potent anti-cancer activity, but the off-target toxicity associated with the benzoquinone moiety hampered its clinical application. Until now, structure optimization of GA is still in need to fully exploit the therapeutic value of Hsp90. Due to the structural complexity and synthetic challenge of this compound family, conventional optimization is bound to be costly but high efficiency is expected to be reachable by combining the art of rational design and total synthesis. Described in this paper is our first attempt at this approach aiming at rational modification of the C6-position of GA. The binding affinities towards Hsp90 of compound 1 (C6-ethyl) and 2 (C6-methyl) were designed and predicted by using Discovery Studio. These compounds were synthesized and further subjected to a thorough in vitro biological evaluation. We found that compounds 1 and 2 bind to Hsp90 protein with the IC50 of 34.26 nmol/L and 163.7 nmol/L, respectively. Both compounds showed broad-spectrum antitumor effects. Replacing by ethyl, compound 1 exhibited more potent bioactivity than positive control GA, such as in G2/M cell cycle arrest, cell apoptosis and client proteins degradations. The results firstly indicated that the docking study is able to provide a precise prediction of Hsp90 affinities of GA analogues, and the C6 substituent of GA is not erasable without affecting its biological activity.  相似文献   

15.
Antibiotics as inhibitors of nucleic acid and protein synthesis   总被引:2,自引:0,他引:2  
The antibiotics of the rifamycin, actinomycin, chromomycin, and anthracycline groups have been found to be specific inhibitors for the DNA-controlled synthesis of RNA in vitro. Streptomycin, chloramphenicol, and puromycin can specifically suppress certain steps in the biosynthesis of proteins. The investigation of the mode of action of such substances may help us to gain a better insight into the transmission of hereditary information.  相似文献   

16.
Daniela Berta  Anna Vulpetti 《Tetrahedron》2005,61(45):10801-10810
The malfunctioning of protein kinases is a hallmark of numerous diseases, for which a satisfactory therapy is missing. We describe the design and synthesis of a kinase targeted library based on a novel 2-(3-phenyl-1H-pyrazol-4-yl)-1,3-benzoxazole scaffold. Ethyl 3-(3-nitrophenyl)pyrazole-4-carboxylate and its 4-nitro regioisomer were bound to trityl chloride resin, saponified with NaOH in MeOH, and amidated with a choice of two o-aminophenols. The resulting N-(2-hydroxyphenyl)amides were cyclized by Mitsunobu reaction to form four variants of the pyrazolyl-benzoxazole core template. Straightforward stannous chloride reduction of the nitro group on solid phase allowed subsequent scaffold derivatization via acylation or sulfonylation of the obtained amino function. Cleavage with TFA gave rise to the final compounds (36 examples).  相似文献   

17.
A series of novel indole derivatives were designed and synthesized and their inhibitory activity against B-Raf and HepG2 cell were also described. Among them, compounds 7a and 7b exhibited excellent potency, which showed the potential for further research as lead compounds.  相似文献   

18.
Four different regioisomers of cationic bis-N,N-dimethylfulleropyrrolidinium salts have been prepared and evaluated as inhibitors of the enzymatic activity of acetylcholinesterase. These fullerene-based derivatives were found to be noncompetitive inhibitors of acetylthiocholine hydrolysis. Molecular modelling was used to describe the possible interactions between the fullerene cage and the amino acids surrounding the cavity of the enzyme. The cationic C(60) derivatives used in this study represent a new class of molecules potentially able to modulate the enzymatic activity of acetylcholinesterase.  相似文献   

19.
Trisubstituted cyclopropanes have previously been established as rigid replacements of dipeptide arrays in several biological systems. Toward further evaluating the utility of these dipeptide mimics in the design of novel CA(1)A(2)X-based inhibitors of Ras farnesyltransferase (FTase), the conformationally constrained, diastereomeric pseudopeptides CAbuPsi[COcpCO]FM 7-9, the flexible analogue CAbuPsi[CHOHCH(2)]FM (10), and the tetrapeptide CAbuFM (6) were prepared. The orientations of the two peptide backbone substituents and the phenyl group on the cyclopropane rings in 7-9were specifically designed to probe selected topological features of the hydrophobic binding pocket of the A(2) subsite of FTase. The syntheses of the requisite trisubstituted cyclopropane carboxylic acid 22 and the diastereomeric cyclopropyl lactones 32a,b featured diastereoselective intramolecular cyclopropanations of chiral allylic diazoacetates and a new method for introducing side chains onto the C-terminal amino acid of cyclopropane-derived dipeptide replacements via the opening of an N-Boc-aziridine with an organocuprate. These cyclopropane intermediates were then converted into the targeted FTase inhibitors 7-9 by standard peptide coupling techniques. The pseudopeptides 7-9 were found to be competitive inhibitors of Ras FTase with IC(50)s of 1055 nM for 7, 760 nM for 8, and 7200 nM for 9. The flexible analogue 10 of these constrained inhibitors exhibited a IC(50) of 320 nM and hence was slightly more potent than 7 and 8. All of these pseudopeptides were less potent than the tetrapeptide parent CAbuFM (6), which had an IC(50) of 38 nM. Because 7 and 8 are approximately equipotent, it appears that the orientation of the peptide backbone substituents on the cyclopropane rings in 7 and 8 do not have any significant effect on binding affinity and that multiple binding modes are possible without significant changes in affinity. On the other hand, this flexibility does not extend to the orientation of the side chain of the A(2) residue as 7 and 8 were both nearly 1 order of magnitude more potent than 9. Comparison of the relative potencies of 6 and 10 suggests that the amide linkage between the A(1) and the A(2) residues of CA(1)A(2)X-derived FTase inhibitors is important.  相似文献   

20.
We designed new pyrazole derivatives as inhibitors of the cell cycle kinases and developed a simple environmentally sustainable synthesis process. We synthesized the pyrazolyl thiourea derivatives using rapid ultrasound mediated methods and confirmed their structures by NMR and IR spectra. The apoptosis and necrosis inducing effects of the new compounds were investigated. Cell cycle analysis and expression of genes involved in apoptosis, cell cycle and xenobiotic metabolism were studied. The compounds presented modest apoptotic effects in human cancer cells. The N-[[3-(4-bromophenyl)-1H-pyrazol-5-yl]carbamothioyl]-4-chloro-benzamide compound (4e) induced a significant increase of cells in G2/M phases in conjunction with an increased expression of cyclin A and cyclin B, emerging as a promising anticancer drug, to be further developed in animal models of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号