首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that a dramatic field-free molecular alignment can be achieved after exciting molecules with proper trains of strong ultrashort laser pulses. Optimal two- and three-pulse excitation schemes are defined, providing an efficient and robust molecular alignment. This opens new prospects for various applications requiring macroscopic ensembles of highly aligned molecules.  相似文献   

2.
Molecular alignment of linear molecules (O2, N2, CO2 and CO) is measured photoacoustically in the gas phase. The rotational excitation is accomplished using a simple femtosecond stimulated Raman excitation scheme, employing two femtosecond pulses with variable delay between the pulses. Molecular alignment is determined directly by measuring the energy dumped into the gas by quartz-enhanced photoacoustic spectroscopy (QEPAS), utilizing a quartz tuning fork as a sensitive photoacoustic transducer. The experimental results demonstrate for the first time the use of a tuning fork for resonant photoacoustic detection of Raman spectra excited by femtosecond double pulses and match both simulation and literature values.  相似文献   

3.
We show that the filamentation dynamics of a femtosecond laser probe pulse can be readily controlled by properly matching it to the quantum revivals of pre-aligned molecules prepared through impulsive rotational Raman excitation with an advancing ultrashort pump pulse. Several features of the filamentation process including supercontinuum generation, the length of the plasma channel generated in the wake of the filament, the associated secondary radiations and the multiple filamentation pattern are all easily modified by tuning the cross phase modulation induced by the field-free revivals of molecular alignment, through the delay between the pump and the probe pulses. We show that molecular alignment can also be used to generate conical waves with extremely short intensity spike called shocked X-waves and to further tune the frequency of a few-cycle laser pulse in the wake of a self-guided intense filament.  相似文献   

4.
Nonadiabatic alignment of rotationally cold N2 molecules is optimally controlled by shaping femtosecond pump pulses with the feedback of degree of alignment evaluated by an ion imaging technique. The alignment is optimized by doubly peaked pulses with approximately equal intensities. A doubly peaked pulse with an appropriate interval can be regarded as a single pulse with a center trough based on the considerations from both time and frequency domains, suggesting that the effective duration of a doubly peaked pulse rather than its structure is crucial to nonadiabatic molecular alignment.  相似文献   

5.
杨增强  周效信 《物理学报》2008,57(7):4099-4103
提出了通过控制双激光脉冲宽度的方法来提高N2分子取向程度. 利用数值方法求解了N2分子刚性转子模型在双激光脉冲作用下的薛定谔方程,计算了双原子分子N2在总强度固定的两束激光脉冲作用下,不同脉冲宽度对于N2分子取向的影响. 研究结果表明,通过调整两束激光脉冲的宽度,选择合适的延迟时间能够有效提高N2分子的取向程度. 关键词: 双激光脉冲 分子取向 脉冲宽度  相似文献   

6.
利用数值方法求解D2分子刚性转子模型在超短飞秒激光脉冲作用下的薛定谔方程,计算了双原子分子D2在两束固定强度的飞秒激光脉冲作用下,延迟时间对于分子取向的影响.结果表明,只要选取合适的延迟时间,就能很好改善分子取向;保持两束激光强度不变,通过调整两束脉冲的宽度,选择合适的延迟时间能够进一步有效提高D2分子的取向程度.  相似文献   

7.
Liu J  Li W  Li H  Feng Y  Pan H  Wu J  Zeng H 《Optics letters》2012,37(13):2748-2750
We experimentally demonstrated that both the electronic Kerr effect and the molecular alignment in gaseous molecules could be applied as transient gates to diagnose 400 nm target pulses. Their birefringence dissimilarity was clearly visualized by the measured spectrogram and retrieved gate function. In the atomic gas argon, a relatively weak and instantaneous cross phase modulation within the pulse duration was observed, while in the molecular gas N(2), the delayed rotational Raman excitation played a dominative role.  相似文献   

8.
Using the classical ensemble method, we investigate nonsequential double ionization (NSDI) of diatomic molecules by elliptically polarized laser pulses. The results show that the ellipticity of the laser field has a strong suppression effect on NSDI probabilities both in parallel and perpendicular alignments. The double ionization (DI) channel is commonly dominated by NSDI, and the NSDI channel changes with ellipticity. As ellipticity increases, more and more NSDIs occur through recollision excitation with subsequent field ionization (RESI). Moreover, like the case of linear polarization, the two electrons involved in NSDI for perpendicularly aligned molecules are more likely to emit into the opposite hemispheres as compared to the case of parallel alignment. Additionally, this alignment effect increases as ellipticity increases.  相似文献   

9.
Pure-phase selective excitation in fast-relaxing systems   总被引:2,自引:0,他引:2  
Selective pulses have been used frequently for small molecules. However, their application to proteins and other macromolecules has been limited. The long duration of shaped-selective pulses and the short T(2) relaxation times in proteins often prohibited the use of highly selective pulses especially on larger biomolecules. A very selective excitation can be obtained within a short time by using the selective excitation sequence presented in this paper. Instead of using a shaped low-intensity radiofrequency pulse, a cluster of hard 90 degrees pulses, delays of free precession, and pulsed field gradients can be used to selectively excite a narrow chemical shift range within a relatively short time. Thereby, off-resonance magnetization, which is allowed to evolve freely during the free precession intervals, is destroyed by the gradient pulses. Off-resonance excitation artifacts can be removed by random variation of the interpulse delays. This leads to an excitation profile with selectivity as well as phase and relaxation behavior superior to that of commonly used shaped-selective pulses. Since the evolution of scalar coupling is inherently suppressed during the double-selective excitation of two different scalar-coupled nuclei, the presented pulse cluster is especially suited for simultaneous highly selective excitation of N-H and C-H fragments. Experimental examples are demonstrated on hen egg white lysozyme (14 kD) and the bacterial antidote ParD (19 kD).  相似文献   

10.
We show experimentally that field-free alignment of iodobenzene molecules, induced by a single, intense, linearly polarized 1.4-ps-long laser pulse, can be strongly enhanced by dividing the pulse into two optimally synchronized pulses of the same duration. For a given total energy of the two-pulse sequence the degree of alignment is maximized with an intensity ratio of 1:3 and by sending the second pulse near the time where the alignment created by the first pulse peaks.  相似文献   

11.
Photoelectron angular distributions (PADs) from above-threshold ionization of O2 and N2 molecules irradiated by a bichromatic laser field of circular polarization are studied. The bichromatic laser field is specially modulated such that it can be used to mimic a sequence of one-cycle laser pulses. The PADs are greatly affected by the molecular alignment, the symmetry of the initial electronic distribution, and the carrier-envelope phase of the laser pulses. Generally, the PADs do not show any symmetry, and become symmetric about an axis only when the symmetric axis of laser field coincides with the symmetric axis of molecules. This study shows that the few-cycle laser pulses can be used to steer the photoelectrons and perform the selective ionization of molecules.  相似文献   

12.
The main focus of this paper is to examine the consequence of laser pulses of narrow width impinging on phosphatidylcholine liposomes containing sulforhodamine dye molecules. The release of dye molecules following short-pulsed laser excitation and localized heating was measured and its dependence on laser excitation parameters studied. A characterization of the optimal conditions necessary for release of liposome contents can be applied to the targeted delivery of therapeutic drugs.  相似文献   

13.
Simultaneous control over the vibrational and rotational molecular responses in ultrafast optical Kerr-effect signals in acetonitrile, toluene, and chloroform at room temperature is achieved by means of non-resonance excitation with two 30-fs orthogonal linearly polarized laser pulses. It is shown that the orientational response of the molecules can be suppressed and their vibrational response isolated by enhanced the delay between the exciting pulses and their relative intensity.  相似文献   

14.
The kinetics of fluorescence polarization in intense pulse excitation of solid disordered solutions of bichromophores that consist of complex molecules of two types between which there can be inductiveresonance transfer of electron-excitation energy is theoretically investigated. Variants of fluorescence excitation by single pulses and pulse trains are considered. The lifetime of the fluorescence of a given solution increases with the intensity of the exciting pulses. The possibility of controlling the duration of fluorescence attenuation for donor molecules incorporated into the bichromophores by the action of luminescence radiation at the frequency of acceptor-molecule absorption on the solution is demonstrated. Belarusian State University, 4, F. Skorina Ave., Minsk, 220050, Belarus. Translated from Zhurnal Prikladnoi Spektroskopii Vol. 65, No. 4, pp. 546–550, July–August, 1998.  相似文献   

15.
The authors of a number of experimental works detected nonresonance biphoton excitation of bacteriochlorophyll molecules, which represent the main pigment in the light-absorbing natural “antenna” complexes of photosynthesizing purple bacteria, by femtosecond IR pulses (1250–1500 nm). They believe that IR quanta excite hypothetic forbidden levels of the pigments of these bacteria in the double frequency range 625–750 nm. We propose and ground an alternative triplet mechanism to describe this phenomenon. According to our hypothesis, the mechanism of biphoton excitation of molecules by IR quanta can manifest itself specifically, through high triplet levels of molecules in the high fields induced by femtosecond-picosecond laser pulses.  相似文献   

16.
We show that two overlapping linearly polarized laser pulses of frequencies omega and its second harmonic 2omega can strongly orient linear polar molecules, by adiabatic passage along dressed states. The resulting robust orientation can be interpreted as a laser-induced localization in the effective double well potential created by the fields, which induces a preliminary molecular alignment. The direction of the orientation can be selected by the relative phase of the fields.  相似文献   

17.
Optical control of coherent intramolecular oscillations in chloroform CHCl3 and dimethyl sulfoxide (CH3)2SO is attained experimentally under normal conditions by means of femtosecond polarization spectroscopy. Nonresonant excitation of the medium is accomplished by a sequence of two linearly polarized laser pulses. The state of the medium is probed by the third pulse via the optical Kerr effect. We show that control over the vibrational dynamics of molecules on a sub-picosecond scale can be achieved by varying the delay between the excitation pulses and their relative intensity.  相似文献   

18.
We use a series of 23 organic molecules to study ionization of complex media caused by their interaction with intense 40 fs, 0.8 &mgr;m pulses. All molecules reach saturated ionization at higher intensities than would be expected for atoms of the same ionization potential, reminiscent to what has been reported for dielectric breakdown with femtosecond pulses. Dependence of the ionization rate on the alignment of the molecule with the laser field is ruled out as the cause of the high saturation intensities. All molecules allow a significant range of intensities between the region of approximately 100% ionization and before the second and subsequent electrons are removed.  相似文献   

19.
We investigate strategies for field-free three dimensional molecular axis alignment using strong nonresonant laser fields under experimentally realistic conditions. Using the polarizabilites and rotational constants of an asymmetric top rotor molecule (ethene, C2H4), we consider three different methods for axis alignment of a Boltzmann distribution of rotors at 4 K. Specifically, we compare the use of impulsive kick laser pulses having both linear and elliptical polarization to the use of elliptically polarized switched laser pulses. We show that an enhanced degree of field-free three dimensional alignment of ground vibronic state molecules obtains from the use of two orthogonally polarized, time-separated laser pulses.  相似文献   

20.
Using optimal control methods, robust broadband excitation pulses can be designed with a defined linear phase dispersion. Applications include increased bandwidth for a given pulse length compared to equivalent pulses requiring no phase correction, selective pulses, and pulses that mitigate the effects of relaxation. This also makes it possible to create pulses that are equivalent to ideal hard pulses followed by an effective evolution period. For example, in applications, where the excitation pulse is followed by a constant delay, e.g. for the evolution of heteronuclear couplings, part of the pulse duration can be absorbed in existing delays, significantly reducing the time overhead of long, highly robust pulses. We refer to the class of such excitation pulses with a defined linear phase dispersion as ICEBERG pulses (Inherent Coherence Evolution optimized Broadband Excitation Resulting in constant phase Gradients). A systematic study of the dependence of the excitation efficiency on the phase dispersion of the excitation pulses is presented, which reveals surprising opportunities for improved pulse sequence performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号