首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
手性丙氨酸单晶的极性N+H…O氢键在~270 K的自发对称性破缺, 可用变温拉曼振动光谱在b(cc)b几何条件下在线测定. 由于其对手性的灵敏度, 可以测定D-和L-丙氨酸的N+H…O氢键在电子自旋翻转相变时的微小能差. 晶体定向能量的正/负, 在于电子自旋的上/下转向, 取决于原子内在磁场的方向. 变温拉曼振动光谱可以观察到: 在D-和L-丙氨酸单晶之间, 拉曼散射光子的波数位移方向相反, 散射光子的不对称度约为1/3. 由于自旋是轴矢量, 样品必须是单晶, 沿轴向测定. 多晶粉末不能观察到相变. 与次甲基(Cα-H)在260 K的自旋翻转相变, 用变温拉曼振动光谱在c(aa)c 几何条件下的相对测量结果接近一致. 本实验提供了一条证明真实手性和“宇称-时间(PT)不对称”的新线索.  相似文献   

2.
利用变温直流磁化率测定, 在外加磁场强度为1 T, 磁场平行晶体c轴, 发现在温度270 K, D-和L-丙氨酸发生磁手性相变. 结合中子衍射确定磁手性相变机制为, D-和L-丙氨酸中的(N+H)有类金属氢原子特性, 在相变点270 K, 由(N+H)释放的电子自旋有磁手性. 用变温偏振拉曼光谱进一步证明, D-丙氨酸中的(N+H)的电子自旋(↑), 而L-丙氨酸中的电子自旋(↓), 处于高低不同的能态.磁手性相变(宇称和时间反演都破缺)能差为10-4-10-5 eV·molecule-1.  相似文献   

3.
研究了与磁场强度相关的手性丙氨酸晶体的电子轨道运动的磁性质. 根据丙氨酸单晶的两性离子(+NH3-C(CH3)H-CO2-)模型的手性和蛋白质中肽键晶格结构的螺旋性, 当外加磁场为5 T, 磁场方向平行于丙氨酸晶轴(c)的极性N+H…O-氢键, 观察到D-丙氨酸晶格中, 氢原子的电子自旋翻转, 在297.6 K直接突现顺磁性. L-丙氨酸则先发生电子自旋转向, 然后在303.9 K突现顺磁性. 实验发现: 外加强磁场可以分裂手性丙氨酸晶格中氢键的简并顺磁态, 并测出能差. 本文进一步证明了准一维极性N+H…O-氢键在晶格中可以发生自旋-轨道分离, 表现出一维物理的基本特征.  相似文献   

4.
Dynamical spin chirality of α-glycine crystal at 301−302 K was investigated by DC (direct current)-magnetic susceptibility measurement at temperatures ranging from 2 to 315 K under the external magnetic fields (H=±1 T) parallel to the b axis. The α-glycine crystallizes in space group P21/n with four molecules in a cell, which has centrosymmetric charge distribution. The bifurcated hydrogen bonds N+(3)−H(8)···O(1) and N+(3)−H(8)···O(2) are stacked along the b axis with different bond intensities and angles, which form anti-parallel double layers. Atomic force spectroscopy result at 303 K indicated that the surface molecular structures of α-glycine formed a regular flexuous framework in the b axis direction. The strong temperature dependence is related to the reorientation of NH3+ group and the electron spin flip-flop of (N+H) mode. Under the opposite external magnetic field of 1 T and −1 T, the electron spins of N+(3)−H(8)···O(1) and N+(3)−H(8)···O(2) flip-flop at 301−302 K. These results suggested a mechanism of the magnetoelectric effect based on the dynamical spin chirality of (N+H), which induced the electric polarization to produce the onset of pyroelectricity of α-glycine around 304 K.  相似文献   

5.
FT IR spectra of a series of compounds with a general formula (N2H5)2HMF6·2H2O (where M∈{Ga, Al, Fe}) were recorded at variable temperatures (from ∼100 to 300 K, at 10 K intervals). The appearance of the spectral region of ν(N-N) modes due to hydrazinium cations further supports the conclusions regarding the N2H5+?H+?N2H5+ hydrogen bond potential well based on Raman spectroscopic data [J. Raman Spectrosc. 28 (1997) 315]. The appearance of two bands corresponding to the ν(N-N) modes in the low temperature FT IR spectra that merge into one upon heating is a clear evidence of a symmetric potential well through which a phonon-assisted proton transfer (PAPT) occurs at higher temperatures. Ab initio MP2/6-311++G(2d,p) quantum chemical study of the proton transfer potential within the N2H5+?H+?N2H5+ cluster confirmed its double-minimum character. The first-order saddle point found on the MP2/6-311++G(2d,p) potential energy hypersurface corresponds to a centrosymmetric structure (C2h symmetry), with the proton placed at the inversion center. The potential energy curve along the tunnelling coordinate was calculated by the intrinsic reaction coordinate (IRC) methodology, leading to an adiabatic PT barrier height of 3.94 kcal mol−1 and a tunneling rate of 1.98 s−1. The corresponding MP4(SDTQ)/6-311++G(2d,p)//MP2/6-311++G(2d,p) value of the adiabatic PT barrier height is 4.26 kcal mol−1.  相似文献   

6.
Fine structure and hyperfine structure information on the chemically reactive 3nπ* state of cyclopentanone is obtained by the low field microwave-optical double resonance (MODOR) technique. The hyperfine structure is interpreted tentatively to indicate that the magnetic z axis lies perpendicular to the carbonyl bond and nearly parallel to the C5C1C2 plane. The principal values of the fine structure spin hamiltonian are D/hc = ±0.1404±0.0001 cm−1, E/hc = +- 0.0271 ± 0.0001 cm−1.  相似文献   

7.
In an effort to understand the nature of the interactions between pyridinium-based ionic liquids and thiophenic compounds, the electronic and topological properties of the interactions between N-butylpyridinium tetrafluoroborate ([BPY]+[BF4]) and thiophene (TS), benzothiophene (BT), dibenzothiophene (DBT) have been investigated by density functional theory. The most stable structure of the [BPY]+[BF4] ion-pair indicated that hydrogen bonding interactions between fluorine atoms on [BF4] anions and C2–H2 on the pyridinium ring play an important role in the formation of the ion-pair. The NBO and AIM analyses indicate the occurrence of π–π stacking interactions. The electron density at bond critical points and Wiberg bond indices are correlated with the interacting distances of H···F interactions, so electron density and Wiberg bond index can demonstrate the interacting strength of H···F hydrogen bonds. The interaction energies suggest that DBT adsorbs prior to the other compounds on N-butylpyridinium tetrafluoroborate ionic liquid.  相似文献   

8.
Two novel assembling systems 3 and 4, with the structures of C6F5CF2?H+N(Me)2CH2CH2(Me2)N+H?CF2C6F5 and C6F5CF2I?N(Me)2CH2CH2(Me)2N?ICF2C6F5, respectively, have been generated from the solution of heptafluorobenzyl iodide 1 and N,N,N,N-tetramethylethylenediamine 2 in dichloromethane. Their structures have been characterized by X-ray diffraction analysis, NMR and IR spectroscopy. Intermolecular N?I halogen bond and F?H hydrogen bond are revealed to be the driving forces for their formation.  相似文献   

9.
Raman spectra of an aqueous solution of glycine (Gly) have been recorded in the range of 400-2000 cm−1. In aqueous solution, glycine molecules exist in their zwitterionic form, having two opposite charged poles, COO and NH3+. The zwitterionic structure of glycine (ZGly) is stabilized by the hydrogen bond interaction of water (W) molecules. In the present report, we have optimized the ground state geometries of different hydrogen bonded complexes of [ZGly + (W)n=1-5] in aqueous medium using DFT calculations at the B3LYP/6-311++G(d) level of theory. A comparative discussion on the structural details and binding energies (BEs) of each conformer has been also done. The theoretical Raman spectra were calculated corresponding to the most stable [ZGly + (W)n=1-5] conformers. The theoretically simulated Raman spectra of each stable conformer were compared with experimentally observed Raman spectra to explore the number of water molecules needed for stabilizing the structure of ZGly. The theoretically simulated Raman spectra corresponding to the most stable conformer of [ZGly + (W)5] having a BE of −22.8 kcal/mol, are matching nicely with the experimentally observed Raman spectra. Thus, on the basis of the above observations, we conclude that the conformer, [ZGly + (W)5] is the most probable conformer in the aqueous medium. We also believe that in the conformer, [ZGly + (W)5] the five water molecules are arranged around the ZGly in such a way that the effect of steric hindrance is less compared to the other conformers. The dipole-dipole interaction potential (DDP) is also calculated corresponding to the strongest hydrogen bond for each [ZGly + (W)n=1-5] conformer.  相似文献   

10.
A mechanistic study of the hydroselenation of alkynes catalyzed by Pd(PPh3)4 and Pt(PPh3)4 has shown that the palladium complex gives products of both SeH and SeSe bond addition to the triple bond of alkynes, while the platinum complex selectively catalyzes SeH bond addition. The key intermediate of PhSeH addition to the metal center, namely Pt(H)(SePh)(PPh3)2, was detected by 1H-NMR spectroscopy. The analogous palladium complex rapidly decomposes with evolution of molecular hydrogen. A convenient method was developed for the preparation of Markovnikov hydroselenation products H2CC(SePh)R, and the scope of this reaction was investigated. The first X-ray structure of the Markovnikov product H2CC(SePh)CH2N+HMe2·HOOCCOO is reported.  相似文献   

11.
Kazuhiro Yoshizawa 《Tetrahedron》2004,60(35):7767-7774
The complete simultaneous and mutual enantiomer resolution of 2,2′-dihydroxy-1,1′-binaphthyl (BNO) and N-(3-chloro-2-hydroxypropyl)-N,N,N-trimethylammonium chloride, Me3N+CH2CH(OH)CH2Cl·Cl into their enantiomers by inclusion complexation between their racemates in EtOH in the presence of a chiral seed crystal is reported. The enantiomer resolution of the rac-BNO was also accomplished easily by inclusion complexation with achiral ammonium salts, N-(2-hydroxyethyl)-N,N,N-trimethylammonium chloride, Me3N+CH2CH2OH·Cl and tetramethylammonium chloride, Me4N+·Cl. Inclusion complexation of the rac-BNO with Me3N+ CH2CH2OH·Cl gave only a 1:1 conglomerate inclusion complex but not a racemic complex. Recrystallization of the rac-BNO and an equimolar amount of Me4N+·Cl from MeOH (7 ml) and MeOH (15 ml) gave a 1:1:1 racemic complex, BNO·Me4N+·Cl·MeOH and a 1:1 conglomerate complex, BNO·Me4N+·Cl, respectively. Novel transformation of the former racemate into the latter conglomerate occurred by heating or by exposure to MeOH vapor in the solid state.  相似文献   

12.
A detailed analysis of monodentate and bidentate complexation of tris(pentafluorophenyl)silyl (TPFS) derivatives with neutral Lewis bases was performed. The NMR spectroscopy and X-ray diffraction analysis (11 structures) were the key methods to characterize tetra- or pentacoordinate silicon compounds, whereas the peculiarities of crystal packing were analyzed by means of DFT calculations. The interaction of TPFS-X (X = F, Cl, OTf) with strong Lewis bases (HMPA, N-methylpyrrolidinone) may afford three different species: neutral pentacoordinate TPFS(X)-L, cationic tetracoordinate TPFS-L+ X, and cationic pentacoordinate TPFS-(L)+2X, representatives of each type were characterized by X-ray diffraction. A variety of complexes with bidentate complexation, featuring the trigonal bipyramidal geometry with apical C6F5-group was prepared and structurally characterized. The extent of Si-Capical bond elongation depends on the donating ability of the coordinating ligand, with the longest Si-C bond of 1.981(1) Å observed for six-membered complex of TPFS-ether of N-(2-hydroxybenzoyl)pyrrolidine.  相似文献   

13.
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2− and (AsO4)3− units, stretching and bending vibrations of hydrogen bonded (OH) ions and Cu2+-(O,OH) units. The approximate range of O–H?O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2− and (AsO4)3− are split and more intense. Lower wavenumbers of δ H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.  相似文献   

14.
Two novel N-heterocyclic carbene disubstituted furan- and pyridine-containing azadithiolate Fe-only hydrogenase models (2 and 4) have been synthesized, and characterized by IR and 1H NMR spectra and X-ray single crystal diffraction. Cyclic voltammetry (CV) experiments indicate that they show more negative reductive potentials at −2.53 V and −2.49 V, respectively versus the ferrocene/ferrocenium couple (Fc/Fc+) and are easier to capture proton attributing to the strong electron-donating ligand NHC. After the protonation under F3CCO2H the reductive potentials of 2 and 4 have 1.02 V and 0.77 V shifts, indicating the formation of Fe–H–Fe bond. The results also are confirmed by the data changes in IR spectra and the negative H signals are detected by 1H NMR spectra at −27 ppm and −55 ppm.  相似文献   

15.
Na2[(VIVO)2(ttha)]·8 H2O (ttha = triethylenetetraamine–N,N,N′,N″,N′″,N′″–hexaacetate ion), prepared by treating [VO(H2O)5][(VO)2(ttha)]·4 H2O with Na6(ttha), has been characterized by single crystal X-ray diffraction, infrared spectroscopy, UV–Vis absorption spectroscopy, electron spin resonance spectroscopy, and modeled by density functional theory (DFT). The X-ray structure revealed a distorted octahedral geometry around each vanadium center. The electronic absorption spectrum of [(VO)2(ttha)]2− (aq) features absorptions at ca. 200 nm (ε > 13900 L mol−1 cm−1), 255 nm (ε = 3480 L mol−1 cm−1), 586 nm (ε = 33 L mol−1 cm−1), and 770 nm (ε = 38 L mol−1 cm−1). The time-dependent density functional theory (TDDFT) calculated electronic absorption spectrum was remarkably similar to the actual spectrum, and TDDFT predicts absorption peaks at 297, 330, 458, 656, and 798 nm. TDDFT assigned the peak at 798 nm to be the α spin HOMO → LUMO transition. Hence, the peak at 770 nm in the actual spectrum is most likely the α spin HOMO → LUMO transition. Moreover, the TDDFT calculations revealed that the α spin HOMO and LUMO are partly comprised of d orbitals on both vanadium centers, and the first derivative electron spin resonance spectrum also suggests that the two unpaired electrons in [(VO)2(ttha)]2− are localized near the vanadium centers.  相似文献   

16.
A new ion-pair complex, [1-(4′-chlorobenzyl)-4-aminopyridinium](+)bis(maleonitrile-dithiolato)nickel(−),[ClbzPyNH2][Ni(mnt)2] (1), has been prepared and characterized. X-ray single crystal structure conforms that the Ni(mnt)2 anions and [ClbzPyNH2]+ cations of 1 form completely segregated uniform stacking columns with the Ni?Ni distance 3.944 Å in the Ni(mnt)2 stacking column. The temperature dependence of the magnetic susceptibility reveals that 1 undergoes a magnetic transition, and exhibits ferromagnetic interaction in the high-temperature phase and spin gap system in the low-temperature phase.  相似文献   

17.
In CH3CN solution at −30 °C, [TAS]+[P3N3F5NS(O)F] (2) is formed from TASF and P3N3F5NSO, the compound readily decomposes to give P3N3F6 and [TAS]+[NSO]. [TAS]+[P3N3F5NS(O)Cl] (3) and [TAS+]2 [{P4N4F6(NS(Cl)N)}2]2− (5) were prepared from TASCl and P3N3F5NSO and 1,5-P4N4F6(NSO)2, respectively, and characterised by X-ray crystallography.  相似文献   

18.
The stable 2,2,6,6‐tetramethylpiperidine‐1‐yloxyl and its derivatives with hydrogen‐bond‐forming (‐OH, ‐OSO3H), anionic (‐OSO3? bearing K+ or [K(18‐crown‐6)]+ as counter ion), or cationic (‐N+(CH3)3 bearing I?, BF4?, PF6? or N?(SO2CF3)2 as counter ion) substituents are investigated in 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide over a wide temperature range. The temperature dependence of the viscosity of the ionic liquid is well described by the Vogel–Fulcher–Tammann equation. Interestingly, the temperature dependence of the rotational correlation time of the spin probes substituted with either a hydrogen‐bond‐forming group or an ionic substituent can be described using the Stokes–Einstein equation. In contrast, the temperature dependence of the rotational correlation time of the spin probe without an additional substituent at the 4‐position to the nitroxyl group does not follow this trend. The activation energy for the mobility of the unsubstituted spin probe, determined from an Arrhenius plot of the spin‐probe mobility in the ionic liquid above the melting temperature, is comparable with the activation energy for the viscous flow of the ionic liquid, but is higher for spin probes bearing an additional substituent at the 4‐position. Quantum chemical calculations of the spin probes using the 6‐31G+d method give information about the rotational volume of the spin probes and the spin density at the nitrogen atom of the radical structure as a function of the substituent at the spin probes in the presence and absence of a counter ion. The results of these calculations help in understanding the effect of the additional substituent on the experimentally determined isotropic hyperfine coupling constant.  相似文献   

19.
Protonated nitroarginine, [RNO2 + H]+, which contains the nitroguanidine ‘explosophore,’ undergoes homolytic N – N nitro-imine bond cleavage to expel NO2 ? and form a radical cation of arginine in high yield (100 % relative abundance) upon low-energy collision-induced dissociation (CID). Other ionization states of nitroarginine, including [RNO2 - H], and a fixed-charge derivative of nitroarginine do not expel NO2 ? (<1 %), but instead dissociate via heterolytic bond cleavage with abundant losses of small molecules (N2O and H2N2O2) from the nitroguanidine group. The effects of proton mobility on the CID reactions of nitroarginine containing peptides was investigated for peptide derivatives of leucine enkephalin, including XYGGFLRNO2, X = D, G, K, and R, by examining the different protonation states: [M – H]; [M + H]+; and [M + 2H]2+. For [M + H]+ containing the less basic N-terminal residues (X = D, G) and all [M + 2H]2+, mobile proton fragmentation reactions that result in peptide sequence ions dominate. In contrast, for peptides containing the basic N-terminal residues (R and K), the CID spectra of both the [M – H] and [M + H]+ are dominated by the losses of small even-electron neutrals from the nitroarginine side-chain. The fraction of nitroguanidine directed fragmentation of the nitroarginine side chain that results in bond homolysis to form [XYGGFLR]+? by expulsion of NO2 ? increases by more than 10 times as the protonation state changes from [M – H] (<10 %) to [M + 2H]2+ (ca. 90 %) and by about four times as the acidity of the [M + H]+ N-terminal residue increases from R (19.0 %) to D (76.5 %). These results indicate that protonated peptides containing nitroarginine can undergo non-canonical mobile proton triggered radical fragmentation.
Figure
?  相似文献   

20.
A series of N-alkyl-N-methylpyrrolidinium (RMPyr+, where R = E: ethyl, B: butyl, and H: hexyl) and N-butylpyridinium (BPy+) salts based on the fluorocomplex anions, BF4, PF6, SbF6, NbF6, TaF6, and WF7, have been synthesized and their thermal behavior has been investigated. The melting points of the RMPyr+ salts are above room temperature with the trend; BMPyrAF6 < HMPyrAF6 < EMPyrAF6 for the hexafluorocomplex salts. Some of the salts containing BMPyr+ and HMPyr+ exhibit phase transitions in the solid states. Similar melting points of BPy+ salts of PF6, SbF6, NbF6, TaF6, and WF7 are observed at around 350 K. Ionic conductivity and viscosity for BMPyrNbF6 (3.0 mS cm−1 and 164 cP at 328 K) are similar to those for BMPyrTaF6 (3.0 mS cm−1 and 165 cP at 328 K), resulting from the similarity of the anions in size. The activation energies of ionic conductivity for the NbF6 and TaF6 salts are 18 and 20 kJ mol−1, and those for viscosity are 23 and 25 kJ mol−1, respectively calculated by Arrhenius equation in the temperature range between 328 and 348 K. Electrochemical windows of BMPyrNbF6, BMPyrTaF6, and BMPyrWF7 are about 4.0, 5.0 and 3.1 V, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号