首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review some recent progress in experimental studies of the adsorption hysteresis of simple molecules in ordered mesoporous silicas. We show that the nature of the adsorption hysteresis due to capillary condensation can be examined with less ambiguity by measuring the hysteresis loop for the ordered mesoporous silicas with three types of pore geometries (cylindrical, interconnected cylindrical, and interconnected spherical) over a wide temperature range. The adsorption hysteresis arises from the metastability of a confined phase and the temperature at which the hysteresis disappears is lower than the critical temperature of vapor-liquid equilibrium in pores. The hysteresis occurs mainly on the desorption rather than adsorption branch, irrespective of the pore geometries.  相似文献   

2.
A novel luminescent hybrid bimodal mesoporous silicas (LHBMS) were synthesized via grafting 1,8-Naphthalic anhydride into the pore channels of bimodal mesoporous silicas (BMMs) for the first time. The resulting samples were characterized by powder X-ray diffraction (XRD), N2 adsorption/desorption measurement, Fourier transform infrared spectroscopy (FT-IR), Transmission electron microscopy (TEM), UV-vis absorption spectroscopy, and Photoluminescence spectroscopy (PL). The results show that 1,8-Naphthalic anhydride organic groups have been successfully introduced into the mesopores of the BMMs and the hybrid silicas are of bimodal mesoporous structure with the ordered small mesopores of around 3 nm and the large mesopores of uniform intra-nanoparticle. The excellent photoluminescent performance of LHBMS has a blue shift compared to that of 2-[3-(triethoxysilyl) propyl-1 H-Benz [de]isoquinoline-1, 3(2 H)-dione, suggesting the existence of the quantum confinement effectiveness.  相似文献   

3.
To examine the nature of the lower closure point of adsorption hysteresis in ordered mesoporous silicas, we measured the temperature dependence of the adsorption-desorption isotherm of nitrogen for three kinds of ordered silicas with cagelike pores and three kinds of ordered silicas with cylindrical pores. The lower closure point pressure of nitrogen in the cagelike pores with sufficiently small necks, that is, the cavitation pressure of a confined liquid, did not depend appreciably on the cage size in the temperature region far away from a hysteresis critical temperature (Tch) but its cage-size dependence was noticeable in the vicinity of Tch. The lower closure point in the cylindrical pores depended on the pore size, and its thermal behavior was totally different from that in the cagelike pores. Nevertheless, the hysteresis critical points of nitrogen in the ordered mesoporous silicas, which are defined as a threshold of temperatures (Tch) and pressure above which reversible capillary condensation takes place in a given size and shape of pores, fell on a common line in a temperature-pressure diagram regardless of the pore geometries. We consider this finding as evidence that capillary evaporation in the cylindrical pores follows a cavitation process in the vicinity of Tch in the same way as that in the cagelike pores and also that the low limit of the hysteresis loop that has been long recognized since 1965 is due to the occurrence of a vapor bubble in a stretched metastable liquid confined to the pores with decreasing pressure (cavitation).  相似文献   

4.
The adsorption of a cationic porphyrin, tetrakis-(N-methyl-4-pyridiniumyl)porphine, into mesoporous silicas from solution of tetrakis-(N-methyl-4-pyridiniumyl)porphine p-toluene sulfonate was investigated. Irrespective of the pore size (2.4, 3.5 and 4.2 nm), the cationic porphyrin was adsorbed effectively onto mesoporous silicas to give brown-colored powders. Depending on the amounts adsorbed, which correlate with the average intermolecular distance, the porphines tend to aggregate (dimer).  相似文献   

5.
A method to determine the volumes of ordered mesopores and complementary small pores in polymer-templated ordered mesoporous silicas and organosilicas is proposed on the basis of the existing relation between the pore width and unit cell values obtained by the XRD structure modeling and the adsorption pore volume.  相似文献   

6.
We have studied the adsorption of Ar on regular, highly-ordered alumina membranes made by anodization. The straight, non-interconnected pores have nominal diameters of 31 and 83 nm, with a relative dispersion better than 5 % in the pore size. Adsorption isotherms taken on bare membranes with pores of 83 nm present two distinct hysteresis loops. This is found to be a consequence of the fabrication procedure that yields a central circular region formed by open pores surrounded by an outer ring with closed bottom pores of smaller size, about 40 nm. For the membrane with pores of 31 nm, the difference between these pores is much smaller, about 2 nm, and this explains why the isotherms on these membranes show a single hysteresis loop as expected. Detailed real space analysis of the membranes by electron microscopy confirms the adsorption conclusions.  相似文献   

7.
This work describes adsorption and wetting characterization of hydrophobic ordered mesoporous silicas (OMSs) with the SBA-15 motif. Three synthetic approaches to prepare hydrophobic SBA-15 silicas were explored: grafting with (1) covalently-attached monolayers (CAMs) of C(n)H(2)(n+1)Si(CH(3))(2)N(CH(3))(2), (2) self-assembled monolayers (SAMs) of C(n)H(2)(n+1)Si(OEt)(3), and (3) direct ("one-pot") co-condensation of TEOS with C(n)H(2)(n+1)Si(OEt)(3) in presence of P123 (n=1-18). The materials prepared were characterized by nitrogen adsorption, TEM, and chemical analysis. The surface properties of the materials were assessed by water contact angles (CAs) and by BET C constants. The results showed that, while loadings of the alkyl groups (%C) were comparable, the surface properties and pore ordering of the materials prepared through different methods were quite different. The best quality hydrophobic surfaces were prepared for SBA-15 grafted with CAMs of alkylsilanes. For these materials, the water CAs were above ~120°/100° (adv/rec) and BET C constants were in the range of ~15-25, indicating uniform low-energy surfaces of closely packed alkyl groups on external and internal surfaces of the pores respectively. Moreover, surfaces grafted with the long-chained (C(12)-C(18)) silanes showed super-hydrophobic behavior (CAs~150-180°) and extremely low adhesion for water. The pore uniformity of parental SBA-15 was largely preserved and the pore volume and pore diameter were consistent with the formation of a single layer of alkylsilyl groups inside the pores. Post-synthesis grafting of SBA-15 with SAMs worked not as well as CAMs: the surfaces prepared demonstrated lower water CAs and higher BET C constants, thereby indicating a small amount of accessible polar groups (Si-OH) related to packing constrains for SAMs supported on highly curved surfaces of mesopores. The co-condensation method produced substantially more disordered materials and less hydrophobic surfaces than any of the grafting methods. The surfaces of these materials showed low water CAs and high BET C constants (~100-200) thereby demonstrating a non-uniform surface coverage and presence of unmodified silica. It is concluded that CAMs chemistry is the most efficient approach in preparation of the functionalized OMS materials with uniform surfaces and pores.  相似文献   

8.
Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc.  相似文献   

9.
A practical approach to the determination of the pore entrance size in ordered silicas with cage-like mesoporous structures (OSCMSs) is proposed. A fundamental insight into the OSCMS pore connectivity is gained, including the control of the pore entrance size by post-synthesis surface modification, and by selection of appropriate synthesis temperature. These findings show a new promise for the synthesis of mesoporous solids with molecular size- and shape-selective properties.  相似文献   

10.
A synthetic method has been developed that can control both multifunctionalization and morphology of the mesoporous organic-inorganic hybrid materials by introducing different molar ratios of organoalkoxysilane precursors to a base-catalyzed co-condensation of silicate.  相似文献   

11.
The dynamic adsorption/desorption behavior of volatile organic compounds (VOCs) such as toluene (C7H8) and benzene (C6H6) was evaluated for three kinds of mesoporous silicas of SBA-15, all having almost the same mesopore size of ca. 5.7 nm, and a MCM-41 silica with a smaller pore size of 2.1 nm using a continuous three-step test. The fiberlike SBA-15 silica exhibited exceptionally good breakthrough behavior, a higher VOC capacity, and easier desorption. The fiberlike silica was composed through the catenation of rodlike particles. The rodlike silicas, by comparison, were proven to be less useful in dynamic adsorption processes because of lower dynamic VOC capacities despite having comparative porous parameters with the fiberlike silica. The large dynamic VOC capacity of the fiberlike silica was attributed to the presence of a bimodal pore system consisting of longer, one-dimensional mesopore channels connected by complementary micropores.  相似文献   

12.
The pore hierarchy of a hierarchical porous SiO2 with 14 nm spherical mesopores and 3 nm worm-like pores (KLE1C16) is studied by small-angle neutron scattering (SANS) in combination with in-situ nitrogen sorption at 77 K. A novel setup is used developed at Hahn-Meitner Institute, Berlin. It is demonstrated that in these materials indeed all of the large mesopores are connected through the smaller ones, thus providing invaluable insights into the general phenomenon of pore connectivity in mesoporous materials.  相似文献   

13.
The equilibrium and dynamic adsorption data of H(2) and D(2) on different micro- and mesoporous adsorbents with orderly structure including 3A, 4A, 5A, Y, and 10X zeolites; carbon CMK-3; silica SBA-15; and so forth were collected. Critical effect of the nanodimension of adsorbents on the adsorption behavior of hydrogen and its isotopes is shown. The highest adsorption capacity was observed at pore size 0.7 nm, but equal or even larger isotope difference in the equilibrium adsorption was observed at larger pore sizes, whereas the largest isotope difference in the dynamic adsorption was observed at 0.5 nm. The adsorption rate of D(2) is larger than that of H(2) in microporous adsorbents, but the sequence could be switched over in mesoporous materials. Linear relationship was observed between the adsorption capacity for hydrogen and the specific surface area of adsorbents although the adsorbents are made of different material, which provides a convincing proof of the monolayer mechanism of hydrogen adsorption. The linear plot for microporous adsorbents has a larger slope than that for mesoporous adsorbents, which is attributed to the stronger adsorption potential in micropores.  相似文献   

14.
15.
A synthesis strategy for the systematic control of the pore wall thickness has been developed for the mesoporous silicas with 2-D hexagonal order using ionic and nonionic surfactant mixtures. The mesoporous silicas have been used as templates for the synthesis of 2-D hexagonally ordered mesoporous carbons with controlled pore diameters. The synthesis strategy and results are useful not only for tailoring the properties of the mesoporous materials but also for extending our insights into the synthesis mechanism.  相似文献   

16.
In the complex alkane/P123/TEOS/H2O emulsion system, an emulsion engineering method to modulate pore length and morphological architecture of mesoporous materials has been built. With fine tuning of the synthetic parameters (e.g., the composition of the synthetic mixtures, temperature, stirring, etc.), a series of chemically significant mesostructures (i.e., short-pore SBA-15 materials) with tunable pore length and morphological architecture have been successfully constructed. The effects of alkane solubilizates on pore length and particle morphology are discussed. The resulting short-pore materials would have potential applications in the fields of adsorption/separation of biomolecules and inclusion chemistry of guest species, etc.  相似文献   

17.
Two types of molecular simulation techniques have been utilized to investigate adsorption of methanol/water mixtures in a mesoporous silica with a hydrophobic pore surface: the NVT-ensemble Molecular Dynamics method with the melt-quench algorithm for modeling a fully-silylated mesoporous silica and the μVT-ensemble Orientaional-Biased Monte Carlo method for calculating adsorption isotherms. Adsorption isotherms of methanol and water at 333 K are calculated for an equi-relative-pressure mixture (each component has the same relative pressure which is defined as the ratio of the partial pressure to the saturation pressure of the pure gas) together with pure gases. In the case of the pure gas, water hardly adsorb even at elevated pressures, while the adsorption isotherm for methanol shows the condensable adsorption. On the other hand, in the case of the mixture, water molecules are substantially adsorbed along with methanol molecules, showing an isotherm representing the condensation mechanism. In addition, it is found that the separation factor of methanol to water is the highest in the case of monolayer adsorption from a liquid mixture.  相似文献   

18.
The adsorption of two common organophosphorus pesticides, diethoxy-[(2-isopropyl-6-methyl-4-pyrimidinyl)oxy]-thioxophosphorane (diazinon) and dimethoxy-(3-methyl-4-nitrophenoxy)-thioxophosphorane (fenitrothion), by MCM-41 and MCM-48 mesoporous silicas at room temperature was investigated. UVvis and IR spectroscopy, small-angle X-ray diffraction, and the specific surface area analysis (S BET) were used to study the adsorption behavior of diazinon and fenitrothion. The results show that the MCM-41 and MCM-48 mesoporous silicas adsorb diazinon more efficiently than fenitrothion. The extraction of adsorbed materials from the adsorbents with polar solvents and subsequent analysis by 31P NMR showed that the adsorption of diazinon and fenitrothion on mesoporous silicas is destructive and non-destructive, respectively. Nitrogen adsorption measurements showed that the specific surface area of both silicas decreases after the adsorption of pesticides, and the larger effect is observed for diazinon. The article is published in the original.  相似文献   

19.
Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm.  相似文献   

20.
Bimodal (4 and 8 nm) mesoporous silicas with interconnected three-dimensional structure were synthesized by mild-temperature post-synthesis hydrothermal treatment of MCM-41 mesoporous materials in ammonia solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号