首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of temperature on the buildup of polyelectrolyte multilayers consisting of poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium) (PDADMA), and poly(allylamine) (PAH) was studied by using a quartz crystal microbalance. The increase of temperature in the deposition process was shown to have a considerable effect on the rate of the layer-by-layer buildup. The effect of temperature on the PDADMA/PSS deposition was found to be stronger than on the PAH/PSS deposition. The increasing temperature was found to extend the exponential buildup regime in all of the studied systems. A buildup model was created to simulate the buildup and to explain the effect of temperature. The model is based on the assumption that each deposition step leads to a quasi-equilibrium between the concentration of the polymer repeating unit in solution and the composition of the layer. According to the model, the layer-by-layer buildup is inherently exponential, becoming linear whenever diffusion is not fast enough to carry the polymer within the entire thickness of the film. This buildup model is discussed jointly with the earlier published three-zone model of the polyelectrolyte multilayers. The rate of the buildup is characterized by growth exponent beta. The temperature dependence of the growth exponent is discussed in connection with the thermodynamic parameters of the deposition.  相似文献   

2.
We have used anionic and cationic single-wall carbon nanotube polyelectrolytes (SWNT-PEs), prepared by the noncovalent adsorption of ionic naphthalene or pyrene derivatives on nanotube sidewalls, for the layer-by-layer self-assembly to prepare multilayers from carbon nanotubes with polycations, such as poly(diallyldimethylammonium) or poly(allylamine hydrochloride) (PDADMA or PAH, respectively), and polyanions (poly(styrenesulfonate), PSS). This is a general and powerful technique for the fabrication of thin carbon nanotube films of arbitrary composition and architecture and allows also an easy preparation of all-SWNT (SWNT/SWNT) multilayers. The multilayers were characterized with vis-near-IR spectroscopy, X-ray photoelectron spectroscopy (XPS), surface plasmon resonance (SPR) measurements, atomic force microscopy (AFM), and imaging ellipsometry. The charge compensation in multilayers is mainly intrinsic, which shows the electrostatic nature of the self-assembly process. The multilayer growth is linear after the initial layers, and in SWNT/polyelectrolyte films it can be greatly accelerated by increasing the ionic strength in the SWNT solution. However, SWNT/SWNT multilayers are much more inert to the effect of added electrolyte. In SWNT/SWNT multilayers, the adsorption results in the deposition of 1-3 theoretical nanotube monolayers per adsorbed layer, whereas the nominal SWNT layer thickness is 2-3 times higher in SWNT/polyelectrolyte films prepared with added electrolyte. AFM images show that the multilayers contain a random network of nanotube bundles lying on the surface. Flexible polyelectrolytes (e.g., PDADMA, PSS) probably surround the nanotubes and bind them together. On macroscopic scale, the surface roughness of the multilayers depends on the components and increases with the film thickness.  相似文献   

3.
The binding of immunogloblulins (IgG) (mouse monoclonal recognizing IFNγ) on precoated polystyrene or silica surfaces by the layer-by-layer technique has been investigated with QCM-D and DPI. The aim of the work was to increase the sensitivity of the conventional enzyme-linked immunosorbent spot (ELISpot) assay. The polyelectrolytes used to build the multilayers were poly(allylamine hydrochloride) (PAH)/poly(sodium 4-styrenesulfonate) (PSS) alternately adsorbed from 150mM NaCl. The multilayer build up is linear and the internal structure of the PAH/PSS multilayer is compact and rigid as observed by low relative water content (20-25%) and high layer refractive index (n~1.5) after the formation of five bilayers. Incorporation of IgG within the PAH/PSS multilayer did not give rise to overcharging and did not affect the linear build up. ELISpot test on PAH/PSS multilayer modified polystyrene wells showed that the cytokine response was significantly smaller than on the regular PVDF backed polystyrene wells. This may be due to the compact and rigid nature of the PAH/PSS multilayer, which does not allow formation of the kind of three dimensional support needed to achieve bioactive IgG binding to the surface. Immunological tests of the polyelectrolyte multilayers in the absence of IgG showed that PSS terminated PAH/PSS multilayer did not induce any cytokine response whereas PAH terminated did, which suggests that PSS totally covers the surface from the cells point of view.  相似文献   

4.
5.
We have investigated polyelectrolyte multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) in contact with D2O by neutron reflectometry. The study particularly focuses on the changes in the solvent fraction of the system upon addition of a layer. When the layers are deposited at a low salt concentration (0.25 M NaCl), no significant changes in the solvent fraction are detected. In contrast, at a larger salt concentration (1 M NaCl), oscillations in the solvent fraction are detected when a new layer is deposited. In this case, addition of PSS systematically increases the solvent volume fraction, and addition of PAH decreases the solvent fraction. The results suggest that one of the parameters driving the oscillations in solvent fraction is the uncompensated charges present in the layers. This study opens new perspectives on results previously published by other authors: in addition to polymer desorption, water uptake or release might contribute to the different regimes of multilayer growth reported in the literature (linear, asymmetric, or exponential growth). In addition, comparison to NMR results previously reported allows for conclusions about the mobility of the solvent in the multilayers: the average rotational correlation time of the water molecules in the polyelectrolyte layers decreases upon addition of PSS and increases upon addition of PAH.  相似文献   

6.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

7.
We report the preparation, characterization, and mechanical properties of polyelectrolyte/phosphorus dendrimer multilayer microcapsules. The shells of these microcapsules are composed either by alternating poly(styrenesulfonate) (PSS) and positively charged dendrimer G4(NH+Et2Cl-)96 or by alternating poly(allylamine hydrochloride) (PAH) and negatively charged dendrimer G4(CH-COO-Na+)96. The same multilayers were constructed on planar support to examine their layer-by-layer growth and to measure the multilayer thickness. Surface plasmon resonance spectroscopy (SPR) showed regular linear growth of the assembly upon each bilayer deposited. We probe the mechanical properties of these polyelectrolyte/dendrimer microcapsules by measuring force-deformation curves with the atomic force microscope (AFM). The experiment suggests that they are much softer than PSS/PAH microcapsules studied before. This softening is attributed to an enhanced permeability of the polyelectrolyte/dendrimer multilayer shells as compared with multilayers formed by linear polyelectrolytes. In contrast, Young's modulus of both dendrimer-based multilayers was found to be on the same order as that of PSS/PAH multilayers.  相似文献   

8.
Prussian blue (PB) nanoparticles were immobilized in polyelectrolyte (PE) multilayers of various compositions and thickness. Films containing nanoparticles and poly(allylamine hydrochloride) (PAH) were formed using the layer-by-layer adsorption method. A layer of branched poly(ethyleneimine) (PEI) was used to anchor the multilayer structure at the surface of a gold electrode. The films exhibited electroactive properties, increasing with the number of deposited PB layers. The properties of PEI/(PB/PAH) n multilayers were then compared with the ones containing additionally the conductive polymer poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS). We found that the addition of the conductive, water-soluble polymer enhances the electroactive properties of the multilayer films. It also increased sensitivity of the multilayer-covered electrodes for electrochemical detection of hydrogen peroxide.  相似文献   

9.
The diffusion coefficient is a fundamental parameter for devices exploiting the ion transport properties of polyelectrolyte multilayers (PEMUs) and complexes. Here, the transport of ferricyanide through a multilayer made from poly(diallyldimethylammonium chloride) (PDADMA) and polystyrene sulfonate (PSS) was studied as a function of temperature or salt concentration. Accurate and precise measurements of ion diffusion coefficients were obtained using steady-state electrochemistry to determine the flux and Fourier transform infrared (FTIR) spectroscopy to measure the PEMU concentration. It was found that the concentration of ferricyanide inside the film decreased with temperature. Membrane transport is strongly thermally activated with activation energy 98 kJ mol(-1). A potential shift with decreasing salt concentration in cyclic voltammograms was translated into a differential flux caused by significantly higher diffusion coefficients for ferricyanide as compared to ferrocyanide.  相似文献   

10.
The influence of a variety of counteranions on the properties of polyelectrolyte multilayers deposited by layer-by-layer technique is studied by using ellipsometry and AFM. We found out that in thin dry multilayers (20-90 nm) ofpoly(4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA), the thickness follows reasonably well the position of the counteranion in the Hofmeister series. The polyelectrolyte-counteranion interaction is studied by means of viscosity measurements of semidilute solutions of PDADMA in the presence of different anions. The dynamic viscosities follow the Hofmeister series of anions and correlate with the thickness of multilayers. Two parameters describing the interaction of ions with water, the Jones-Dole viscosity B coefficient and the hydration entropy, are used to explain the anion effect on the developing multilayer thickness. Reasonably smooth and monotonic functional dependence is observed between the layer thickness and these two parameters.  相似文献   

11.
Interactions between surfaces bearing multilayer films of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonate sodium salt) (PSS) were investigated across a range of aqueous KBr solutions. Three layer films (PAH/PSS/PAH) were preassembled on mica surfaces, and the resulting interactions were measured with the interferometric surface force apparatus (SFA). Increasing the ionic strength of the medium resulted in a progressive swelling of the multilayer films. Interactions in solutions containing more than 10(-3) M KBr were dominated by a long-ranged steric repulsion originating from compression of polyelectrolyte segments extending into solution. In 10(-1) M KBr, repeated measurements at the same contact position showed a considerable reduction of the range and the strength of the steric force, indicating a flattening of the film during initial approach. Furthermore, this flattening was irreversible on the time scale of the experiments, and measurements performed up to 72 h after the initial compression showed no signs of relaxation. These studies aid in understanding the dominant interactions between polyelectrolyte multilayers, including polyelectrolyte films deposited on colloidal particles, which is important for the preparation of colloidally stable nanoengineered particles.  相似文献   

12.
A quartz crystal microbalance (QCM) and dual polarization interferometry (DPI) have been utilized to study how the structure of poly(allylamine hydrochloride) (PAH)/poly(styrene sulfonate) (PSS) multilayers is affected by the rinsing method (i.e., the termination of polyelectrolyte adsorption). The effect of the type of counterions used in the deposition solution was also investigated, and the polyelectrolyte multilayers were formed in a 0.5 M electrolyte solution (NaCl and KBr). From the measurements, it was observed that thicker layers were obtained when using KBr in the deposition solution than when using NaCl. Three different rinsing protocols have been studied: (i) the same electrolyte solution as used during multilayer formation, (ii) pure water, and (iii) first a salt solution (0.5 M) and then pure water. When the multilayer with PAH as the outermost layer was exposed to pure water, an interesting phenomenon was discovered: a large change in the energy dissipation was measured with the QCM. This could be attributed to the swelling of the layer, and from both QCM and DPI it is obvious that only the outermost PAH layer swells (to a thickness of 25-30 nm) because of a decrease in ionic strength and hence an increase in intra- and interchain repulsion, whereas the underlying layers retain a very rigid and compact structure with a low water content. Interestingly, the outermost PAH layer seems to obtain very similar thicknesses in water independent of the electrolyte used for the multilayer buildup. Another interesting aspect was that the measured thickness with the DPI evaluated by a single-layer model did not correlate with the estimated thickness from the model calculations performed on the QCM-D data. Thus, we applied a two-layer model to evaluate the DPI data and the results were in excellent agreement with the QCM-D results. To our knowledge, this evaluation of DPI data has not been done previously.  相似文献   

13.
The electro-optical behavior of a multilayer constructed via layer-by-layer deposition of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) onto ellipsoidal β-FeOOH particles is examined using electric light scattering method. For fully charged polymers (at pH 4.5), the electro-optical effect is found to increase with polyelectrolyte layer number, showing a tendency to saturation in the linear growth regime. The effect is greater and of lower frequency of relaxation for the films ending with PAH in comparison to those with top PSS layer. Evidence is given that polarization of “condensed” counterions along the chains of the last-adsorbed polymer is mainly responsible for the observed electro-optical behavior of the polyelectrolyte multilayer. Although incorporation of “condensed” small ions into the film bulk seems probable for the PSS/PAH multilayer, their participation in the electro-optical effect is found negligible. The structural changes in the PSS/PAH multilayer due to the PAH deprotonation at pH 7.5 and the corresponding changes in the electro-optical effect confirm the key role of the last-adsorbed polymer for the behavior of the entire PSS/PAH film.  相似文献   

14.
Temperature- and pH-sensitive poly(N-isopropylacrylamide)?Cco-acrylic acid (pNIPAm-co-AAc) microgels were deposited on glass substrates coated with polyelectrolyte multilayers composed of the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(sodium 4-styrenesulfonate) (PSS). The microgel density and structure of the resultant films were investigated as a function of: (1) the number of PAH/PSS layers (layer thickness); (2) the charge on the outer layer of the polyelectrolyte multilayer film; and (3) the pH of microgel deposition solution. The resultant films were studied by differential interference contrast optical microscopy, atomic force microscopy, and scanning electron microscopy. It was found that the coverage of the microgels on the surface was a complex function of the pH of the deposition solution, the charge on the outer layer of the polyelectrolyte thin film and the PAH/PSS layer thickness; although it appears that microgel charge plays the biggest role in determining the resultant surface coverage.  相似文献   

15.
Patterned multilayer films composed of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) were prepared using dip and spin self-assembly (SA) methods. A silicon substrate was patterned with a photoresist thin film using conventional photolithography, and PAH/PSS multilayers were then deposited onto the substrate surface using dip or spin SA. For spin SA, the photoresist on the substrate was retained, despite the high centrifugal forces involved in depositing the polyelectrolytes (PEs). The patterned multilayer films were formed by immersing the PE-coated substrates in acetone for 10 min. The effect of ionic strength on the pattern quality in dip and spin multilayer patterns (line-edge definition and surface roughness of the patterned region) was investigated by increasing the salt concentration in the PE solution (range 0-1 M). In dip multilayer patterns, the presence of salt increased the film surface roughness and pattern thickness without any deformation of pattern shape. The spin multilayer patterns formed without salt induced a height profile of about 130 nm at the pattern edge, whereas the patterns formed with high salt content (1 M) were extensively washed off the substrates. Well-defined pattern shapes of spin SA multilayers were obtained at an ionic strength of 0.4 M NaCl. Multilayer patterns prepared using spin SA and lift-off methods at the same ionic strength had a surface roughness of about 2 nm, and those prepared using the dip SA and lift-off method had a surface roughness of about 5 nm. The same process was used to prepare well-defined patterns of organic/metallic multilayer films consisting of PE and gold nanoparticles. The spin SA process yielded patterned multilayer films with various lengths and shapes.  相似文献   

16.
Gold nanoparticles of 5 nm diameter, stabilized by 4-(dimethylamino)pyridine (DMAP), were coated with poly(sodium 4-styrene sulfonate) (PSS) via electrostatic self-assembly. The suspension stability, monitored by the gold surface plasmon band (SPB), was studied by varying the pH, the PSS chain length, and PSS concentration. Enhanced stability is obtained at pH 10 (above the pKa of DMAP) when the polymer chain length matches or exceeds the particle circumference. Solid state 13C NMR was used to determine the presence of DMAP and polymers after subsequent deposition of weak and strong polycations: poly(allylamine hydrochloride) (PAH) and poly(diallyldimethylammonium chloride) (PDADMAC). At pH 10, DMAP remains associated with the nanoparticle after the first PSS layer has been formed. When PAH or PDADMAC are subsequently added at pH 4.5, DMAP is expelled, the suspensions remain stable, and zeta potential values indicate complete charge reversal. In the case of PDADMAC, however, the first layer of PSS is not fully retained. When PDADMAC is added at pH 10, DMAP and the first PSS layer are retained but lower zeta potentials and a higher SPB shift indicate a degraded stability. For PAH addition at pH 9.5, both DMAP and PSS are expelled and the suspension becomes unstable. These differences in stability of the multilayer components and the nanoparticle suspension are rationalized in terms of chain flexibility, polymer charge density, and the ability of the polymer functional groups to directly interact with the gold surface.  相似文献   

17.
The influences of pH and NaCl concentration of dipping solutions and the pH and NaCl concentration of disintegration solutions on the disintegration behaviors of poly(4-vinylpyridiniomethanecarboxylate) (PVPMC)/poly(sodium 4-styrenesulfonate) (PSS) (PVPMC/PSS) multilayer films were investigated by ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FT-IR), quartz crystal microbalance (QCM) and atomic force microscopy (AFM). It was found that the disintegration rates and degrees of PVPMC/PSS multilayer films in neutral water could be well controlled by changing pH of dipping solutions and immersion time during the disintegration process. Furthermore, PVPMC/PSS multilayer films could be disintegrated completely and rapidly in pH 8 alkali solution or physiological condition (i.e., 0.15 M NaCl solution). The controllable disintegration of PVPMC/PSS multilayer films was then utilized to fabricate PEC/PSS free-standing multilayer films, in which PEC was a positively charged polyelectrolyte complex made from excessive poly(diallyldimethylammonium) (PDDA) and PSS. The experimental results indicated that the disintegration rates of PVPMC/PSS sacrificial sublayer strongly affected the integrity of the resultant PEC/PSS free-standing multilayer films. Only free-floating PEC/PSS was released from neutral water by disintegrating PVPMC/PSS multilayer sublayers. However, large size flat and tube-like PEC/PSS free-standing multilayer films with good mechanical properties were obtained facilely from pH 8 alkali solution and 0.15 M NaCl solution, respectively. The preparation of such free-standing films at physiological condition may be useful in the biological or medical application.  相似文献   

18.
The formation of polyelectrolyte multilayers (PEMs) is investigated using a silicon-on-insulator based thin film resistor which is sensitive to variations of the surface potential. The buildup of the PEMs at the silicon oxide surface of the device can be observed in real time as defined potential shifts. The influence of polymer charge density is studied using the strong polyanion poly(styrene sulfonate), PSS, combined with the statistical copolymer poly(diallyl-dimethyl-ammoniumchloride-stat-N-methyl-N-vinylacetamide), P(DADMAC-stat-NMVA), at various degrees of charge (DC). The multilayer formation stops after a few deposition steps for a DC below 75%. We show that the threshold of surface charge compensation corresponds to the threshold of multilayer formation. However, no reversion of the preceding surface charge was observed. Screening of polyelectrolyte charges by mobile ions within the polymer film leads to a decrease of the potential shifts with the number of layers deposited. This decrease is much slower for PEMs consisting of P(DADMAC-stat-NMVA) and PSS as compared to PEMs consisting of poly(allylamine-hydrochloride), PAH, and PSS. From this, significant differences in the dielectric constants of the polyelectrolyte films and in the concentration of mobile ions within the films can be derived.  相似文献   

19.
With X-ray and neutron reflectivity, the structure and composition of polyelectrolyte multilayers from poly(allyl amine) (PAH) and poly(styrene sulfonate) (PSS) are studied as function of preparation conditions (salt concentration and solution temperature, T). The onset of a temperature effect occurs at 0.05 M NaCl (Debye length approximately 1 nm). At 1 M salt, the film thickness increases by a factor of 3 on heating the deposition solution from 5 to 60 degrees C. The PAH/PSS bilayer thickness is independent of the kind of salt (NaCl or KCl), yet its composition is different (more bound water for NaCl). At low T, the internal roughness is 33% of the bilayer thickness; it increases to 60% at high T. The roughening is accompanied by a total loss of bound water. At which temperature the roughening starts is a function of the kind of salt (50 degrees C for NaCl and 35 degrees C for KCl). The strong temperature dependence and the eventual loss of bound water molecules may be attributed to the hydrophobic force; however, there is an isotope effect, since the loss of bound water is less pronounced in the deuterated layers.  相似文献   

20.
Atomic force microscopy, AFM, and nanoindentation of polyelectrolyte multilayers, PEMUs, made from poly(diallyldimethylammonium), PDADMA, and poly(styrene sulfonate), PSS, provided new insight into their surface morphology and growth mechanism. A strong odd/even alternation of surface modulus revealed greater extrinsic (counterion-balanced) charge compensation for fully hydrated multilayers ending in the polycation, PDADMA. These swings in modulus indicate a much more asymmetric layer-by-layer growth mechanism than previously proposed. Viscoelastic properties of the PEMU, which may contribute to cell response, were highlighted by variable indentation rates and minimized by extrapolating to zero indentation rate, at which point the surface and bulk equilibrium moduli were comparable. Variations in surface composition were probed at high resolution using force mapping, and the surface was found to be uniform, with no evidence of phase separation. AFM comparison of wet and dry films terminated with PSS and PDADMA revealed much greater swelling of the PDADMA-terminated PEMU by water, with collapse of surface roughness features in dry conditions. Dynamic and static contact angle measurements suggested less rearrangement for the glassy PSS surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号