首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid mesoporous silicas functionalized with ethylenediamine groups have been synthesized via sol–gel process under different conditions. The best textural properties, with pore diameters up to 170 Å, have been obtained using carboxylic acids as catalysts in propanol as solvent without the need for any surfactant. The presence of the diamine moiety has been demonstrated by different characterization techniques, and the materials have been used in the adsorption of copper cations. The adsorption capacity of all the solids is high (up to 1.87 mmol/g and up to 2.47 Cu atoms/nm2), with important variations in the properties of the silica surface, besides the role of the immobilized diamine moieties as ligand for copper. In general the surface area seems to be the most important feature controlling the adsorption.  相似文献   

2.
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts.  相似文献   

3.
In this article, we report a systematic investigation on the morphologies of SBA-15 type large-pore periodic mesoporous organosilicas templated by the block copolymer P123. By tuning synthetic parameters such as stirring, acidity, reaction ratio, reaction duration, and autoclaving, a wide spectrum of unique primary particle morphologies, such as the spindle-, pearl-, diamond-, rod-, and platelike particles, and nanoparticles has been prepared. These primary particles were found to self-assemble in solution to form various large hierarchical macrostructures, such as mesostructured necklaces and cobweb-supported necklaces. The assembling process was elucidated with the information observed at different stages of reaction. Stirring, reaction duration, and autoclaving were identified to be the key factors affecting the efficiency and degree of the self-assembly process. A nucleation-accretion mechanism for the formation of various PMO primary particles was proposed by examining the relation between the external morphologies and the underlying mesostructure.  相似文献   

4.
A hierarchical mesoporous ZSM-5 zeolite has been synthesized by using starch-derived bread as a meso-template. The obtained mesoporous ZSM-5 was characterized with X-ray diffraction (XRD), nitrogen sorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermogravimetric (TG)/differential thermal analysis (DTA) techniques. Hydrothermal treatments revealed that the mesoporosity in hierarchical mesoporous ZSM-5 exhibited excellent hydrothermal stability. Catalytic tests showed that hierarchical mesoporous ZSM-5 was more active than conventional zeolite of ZSM-5 in catalytic cracking of 1,3,5-tri-isopropylbenzene. Hydrogen adsorption measurements showed hierarchical mesoporous ZSM-5 had a higher storage capacity than the conventional ZSM-5.  相似文献   

5.
6.
Periodic mesoporous organosilicas (PMOs) prepared by surfactant-directed polycondensation of bridged organosilane precursors are promising for a variety of next-generation functional materials, because their large surface areas, well-defined nanoporous structures and the structural diversity of organosilica frameworks are advantageous for functionalization. This critical review highlights the unique structural features of PMOs and their expanding potential applications. Since the early reports of PMOs in 1999, various synthetic approaches, including the selection of hydrolytic reaction conditions, development of new precursor compounds, design of templates and the use of co-condensation or grafting techniques, have enabled the hierarchical structural control of PMOs from molecular- and meso-scale structures to macroscopic morphology. The introduction of functional organic units, such as highly fluorescent π-conjugates and electroactive species, into the PMO framework has opened a new path for the development of fluorescent systems, sensors, charge-transporting materials and solid-state catalysts. Moreover, a combinational materials design approach to the organosilica frameworks, pore wall surfaces and internal parts of mesopores has led to novel luminescent and photocatalytic systems. Their advanced functions have been realized by energy and electron transfer from framework organics to guest molecules or catalytic centers. PMOs, in which the precise design of hierarchical structures and construction of multi-component systems are practicable, have a significant future in a new field of functional materials (93 references).  相似文献   

7.
In this study, we focused on the adsorption of nicotine from aqueous solution such as water and simulated body fluids (SBFs), where SBF has ion concentrations approximately equal to those of human blood plasma. We prepared periodic mesoporous organosilica (PMO) materials as adsorbents from 4,4-bis(triethoxysilyl)biphenyl (BTES-biphenyl), 1,4-bis(triethoxysilyl)benzene (BTES-benzene) and bis[3-(trimethoxy silyl)propyl]amine (BTMS-amine) as precursors and investigated on their adsorption behavior of nicotine as a guest material under different solvent conditions. For this work, two different kinds of SBF, c-SBF and r-SBF, have been chosen, where c-SBF is a transitional SBF solution, and r-SBF is a modified SBF solution that is closer to human blood plasma. Adsorption of nicotine on PMOs has been characterized by a UV-Vis spectroscopy. The adsorption behavior was strongly dependent on the isoelectric point and hydrophobicity of the PMO as well as the hydrophobicity of nicotine.  相似文献   

8.
The first synthesis of a chiral periodic mesoporous organosilica (PMO) carrying benzylic ether bridging groups is reported. By hydrolysis and condensation of the new designed chiral organosilica precursor 1,4-bis(triethoxysilyl)-2-(1-methoxyethyl)benzene (BTEMEB) in the presence of the non-ionic oligomeric surfactant Brij 76 as supramolecular structure-directing agent under acidic conditions, an ordered mesoporous chiral benzylic ether-bridged hybrid material with a high specific surface area was obtained. The chiral PMO precursor was synthesized in a four-step reaction from 1,4-dibromobenzene as the starting compound. The evidence for the presence of the chiral units in the organosilica precursor as well as inside the PMO material is provided by optical activity measurements.  相似文献   

9.
In this article, we report the synthesis of methylene-bridged periodic mesoporous organosilicas (PMOs) of the SBA-15 type. The materials were characterized by SAXS, BET, NMR, FESEM, and TEM. It was found that the synthesis of methylene-bridged SBA-15 PMOs requires more rigorous conditions than that of SBA-15 PMOs bearing organic bridges other than methylene. A mild acidic environment, which slows down the hydrolysis and condensation rates of the precursor, with the assistance of a salt, which enhances precursor-template interaction, should be used to synthesize high-quality large-pore methylene-bridged PMOs. We attributed this to the fast hydrolysis and condensation rates and the rigid backbone of precursor 1,2-bis(triethoxysilyl)methylene. By examining and comparing the synthesis of three large-pore PMOs with different bridges, we concluded that the inductive, bridging, and conformation effects of the organic bridging group play an important role in the synthesis of large-pore PMO materials.  相似文献   

10.
The integration of organic and inorganic fragments within the pore walls of the periodic mesoporous organosilicas (PMOs) represents one of the recent breakthroughs in material science. The resulting PMOs are promising materials for applications in such areas as catalysis, adsorption, separation and drug-delivery. We summarize here the recent progress made in the synthesis of PMOs with hierarchical structures and large functional groups, with special emphasis on the chiral mesoporous organosilicas and their ...  相似文献   

11.
Bi- and trifunctional periodic mesoporous organosilicas (PMOs) with phenylene, thiophene, and ethane bridging groups were synthesized using 1,2-bis(triethoxysilyl)ethane (BTEE), 1,4-bis(triethoxysilyl)benzene (BTEB), and 2,5-bis(triethoxysilyl)thiophene (BTET) organosilica precursors and a poly(ethylene oxide)-poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene oxide) (PEO-PLGA-PEO) triblock copolymer template under low acidic conditions. The PMO samples with different concentrations of organic bridging groups were obtained in the form of spherical particles having average diameters of 2-3 mum and 2D hexagonal (p6m) mesostructure with pore diameters of 7.3-8.4 nm. The particle morphology and chemistry of pore walls were tailored using different mixtures of organosilica precursors. Adsorption and structural properties of the aforementioned PMOs have been studied by nitrogen adsorption and small-angle X-ray scattering, whereas their framework chemistry was quantitatively analyzed by solid-state 13C and 29Si MAS NMR.  相似文献   

12.
Functionalized magnetic Fe_3O_4@SiO_2 composite nanoparticles were prepared by simply embedding iron oxide nanoparticles into MCM-41 through one-step synthesis process, followed by aminopropyls grafting on the mesopore channels, aiming to efficiently and conveniently uptake U(VI) from aqueous solution. The resultant material possesses highly ordered mesoporous structure with large surface area, uniform pore size, excellent thermal stability, quick magnetic response, and desirable acids resistance, confirmed by Fourier transform infrared spectroscopy(FTIR), scanning electron microscopy(SEM), N_2 adsorption/desorption experiments, powder X-ray diffraction(PXRD), and thermogravimetric analysis(TGA). Detailed U(VI) sorption test indicated that this material is indeed an effective U(VI) sorbent with fast sorption kinetics of less than 2 h, large sorption capacity of 160 mg/g at p H 5.0±0.1, and desirable selectivity towards U(VI) ions over a range of competing metal ions. The absorbed U(VI) can be easily desorbed by 0.01 mol/L or more concentrated HNO_3 solution, and the reclaimed sorbent can be reused with no obvious decrease of sorption capacity even after 4 sorption-desorption cycles. The present results suggest the vast opportunities of this kind of magnetic composite on the solid-phase extraction of U(VI).  相似文献   

13.
A new route to periodic mesoporous aminosilicas (PMAs) that contain amine functional groups in the framework of a mesoporous network is reported. The materials are prepared via thermal ammonolysis of periodic mesoporous organosilicas (PMOs) under a flow of ammonia gas. PMOs integrate similar or even higher quantities of nitrogen-containing groups upon ammonolysis than similarly treated ordered mesoporous silicas (MCM-41). The quantity of amine groups introduced into the materials was found to depend strongly on the ammonolysis temperature. The largest loading of amine groups was obtained when a well-ordered cubic methylene PMO material without prior vacuum-drying was thermolyzed in ammonia. The ordered mesoporosity of PMOs was preserved during the ammonolysis with only a slight decrease in the mesopore size and the degree of mesostructural ordering. The extent of substitution of framework oxygen by amine and nitride groups was established by solid-state (29)Si CP-MAS, (29)Si MAS, (15)N MAS, and (13)C CP-MAS NMR spectroscopies, elemental analysis, and X-ray photoelectron spectroscopy. In some cases, methylene and methyl functional groups were also present in the PMAs along with amine functional groups, as inferred from elemental analysis and gas adsorption, particularly in cases where PMOs were subjected to ammonolysis at 400 and 550 degrees C for several hours. This resulted in new multifunctional mesoporous organoaminosilica nanomaterials with properties that could be tuned by systematically varying the relative amounts of hydrophilic amine and hydrophobic hydrocarbon pendent and framework groups. The stability upon storage was found to be much higher for PMAs obtained from PMOs than for those obtained from MCM-41 silicas under the same conditions.  相似文献   

14.
A novel synthesis of diastereoselective pure periodic mesoporous ethenylene-silicas is presented, using (a) the homemade E-diastereoisomer of bis(triethoxysilyl)ethene, (b) a more efficient extraction procedure of the template P123 and (c) an ultra-fast synthesis procedure.  相似文献   

15.
A series of quasi-elastic neutron scattering measurements were performed using IN6 at the Institute Laue Langevin for a mesoporous organosilica material with phenyl functions, called phenyltriethoxysilane (PTES). The aim of the experiment was to study the diffusion dynamics of nano-scale water clusters inside the hydrophobic pores as a function of temperature and hydration. By fitting the Debye-Waller factor, the data show clearly the different behavior between water, both inside and outside the hydrophobic pores, which resembles bulk water. The mean thermal displacement 〈u2〉 of the external water increases with T almost linearly up to 353 K, while the internal water quickly reaches the maximum at T∼323 K, indicating the confinement by an averaged pore diameter of the porous organosilica.  相似文献   

16.
Organosilicas with grafted -diketone derivatives were synthesized and investigated by IR-spectroscopy and chemical analysis. The conditions of strontium ion uptake on oxygen-containing organosilicas were studied. Heterogeneous Pt-complex catalyst for liquid phase hydrosililation based on acetylacetone bonded to silica was obtained.  相似文献   

17.
The adsorption of CdII cations on the surface of amorphous macroporous silicas chemically modified by β-cyclodextrin and its functional derivatives was studied. The adsorption of CdII cations was shown to follow the equation of the Freundlich isotherm for the heterogeneous surface. Analysis of the adsorption kinetic curves showed that two parallel processes occurred on the surface of β-cyclodextrin-containing silicas. A substantial increase in the adsorption of Cd(NO3)2 is a result of the formation of uncharged supramolecular structures on the surface of silica adsorbents. The composition of these structures depends on the polarizability of functional substituents of β-cyclodextrins.  相似文献   

18.
A phase transformation of mesoporous organosilicas from 2D-hexagonal P6mm to cubic Pm3n phase can be induced by the organotrialkoxysilane with hydrophilic pendant group with the aid of methanol during the co-condensation of 1,2-bis(trimethoxysilyl)ethane (BTME) and (EtO)(3)Si-R (R = L-prolinamide, trans-(1R,2R)-diaminocyclohexane, and gamma-aminopropyl) using the cationic surfactant, octadecyltrimethylammonium chloride (C(18)TMACl), as template in basic medium. Under similar synthesis conditions, no cubic Pm3n phase could be formed in the absence of (EtO)(3)Si-R. Depending on the type of the pendant group, different amounts of methanol were needed for the formation of the cubic Pm3n phase. N-[(triethoxysilyl)propyl]-L-prolinamide (M(L-Pro)) could easily induce the phase changing from 2D-hexagonal P6mm to cubic Pm3n phase probably because L-proline could result in a decreasing of the surfactant packing factor (g) through formation of large architecture on the outer boundary of the surfactant micelles. The organotrialkoxysilane can also help the formation of spherical morphology of the resultant materials.  相似文献   

19.
Large-pore ethenylene-bridged (-CH═CH-) and phenylene-bridged (-C(6)H(4)-) periodic mesoporous organosilicas (PMOs) with face-centered-cubic structure (Fm3m symmetry) of spherical mesopores were synthesized at 7 °C at low acid concentration (0.1 M HCl) using Pluronic F127 triblock copolymer surfactant in the presence of aromatic swelling agents (1,3,5-trimethylbenzene, xylenes-isomer mixture, and toluene). In particular, this work reports an unprecedented block-copolymer-templated well-ordered ethenylene-bridged PMO with cubic structure of spherical mesopores and an unprecedented block-copolymer-templated face-centered cubic phenylene-bridged PMO, which also has an exceptionally large unit-cell size and pore diameter. The unit-cell parameters of 30 and 25 nm and the mesopore diameters of 14 and 11 nm (nominal BJH-KJS pore diameters of 12-13 and 9 nm) were obtained for ethenylene-bridged and phenylene-bridged PMOs, respectively. Under the considered reaction conditions, the unit-cell parameters and pore diameters were found to be similar when the three different methyl-substituted benzene swelling agents were employed, although the degree of structural ordering appeared to improve for phenylene-bridged PMOs in the sequence of decreased number of methyl groups on the benzene ring.  相似文献   

20.
Spectroscopic evidence of the thermally induced generation of multifunctional mesoporous materials through metamorphism within the pore walls of ethenylene-bridged PMOs is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号