首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two multi-nuclear titanium complexes [Ti(η5-Cp*)Cl(μ-O)]3 (1) and [(η5-Cp*TiCl)(μ-O)2(η5-Cp*Ti)2(μ-O)(μ-O)2]2Ti (Cp* = C5Me5) (2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures (Tm) than the mother complex Cp*TiCl3 does when the polymerization temperature is above 70℃and the Al/Ti molar ratio is in the low range especially.  相似文献   

2.
A series of titanium complexes Cp*TiCl((OCH(R)CH2)2NAr) (Cp* = C5Me5, R = H, Ar = Phenyl ( 2a) ; R = H, Ar = 2,6‐dimethylphenyl ( 2b ); R = Me, Ar = Phenyl ( 2c )) was prepared by the reaction of corresponding N,N‐diethoxylaniline derivatives, with Cp*TiCl3 in the presence of excessive triethylamine. All the titanium complexes display higher catalytic activities towards the syndiospecific polymerization of styrene in the presence of modified methylaluminoxane (MMAO) as a cocatalyst, and produce higher molecular weight polystyrenes with higher syndiotacticity and melting temperature than their mother complex Cp*TiCl3. The catalyst activities and polymer yields as well as polymer properties are considerably affected by the steric and electronic effect of the tridentate ligands. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1562–1568, 2005  相似文献   

3.
Some bis(cyclopentadienyl)titanium(IV) complexes of the type [Cp2TiCl2?n{L}n] {where, n = 1 or 2; L = ONC(R)Ar; R = H or CH3 and Ar = C5H4N‐2, C4H3O‐2 or C4H3S‐2} have been synthesized by the metathetical reactions of Cp2TiCl2 with the sodium salt of internally functionalized oximes in 1:1 and 1:2 stoichiometry in anhydrous THF. All these red to brown colored solid derivatives have been characterized by elemental analyses, FT‐IR and NMR (1H and 13C{1H}) spectral studies. The FAB mass spectra of some representative derivatives indicate their monomeric nature. Oximato ligands in all the complexes appear to bind the titanium via N and O in a dihapto ( ‐N, O) manner in the solid state. Thermogravimetric curves of [Cp2TiCl{ONC(CH3)C5H4N‐2}] and [Cp2Ti{ONC(CH3)C5H4N‐2}2] suggest the formation of hybrid materials CpTiO(Cl) and Cp2TiO, respectively, as the final products at 900 °C under nitrogen atmosphere. Sol–gel transformations of Cp2TiCl2, [Cp2TiCl{ONC(CH3)C5H4N‐2}] and [Cp2Ti{ONC(CH3)C5H4N‐2}2] yielded titania a–c, respectively, at low sintering temperature (600 °C). The powder XRD patterns, IR as well as Raman spectra of all these oxides indicate the formation of nano‐sized anatase phase. The SEM images of titania a–c indicate agglomers like surface morphologies. The absorption spectra of a–c exhibit an energy band gap in the range of 3.47–3.71 eV. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
研究以对-二枯基氯(DCC)/AlCl3体系引发异丁烯在CH2Cl2/Hex(40/60,V/V)混合溶剂中进行正离子聚合,探讨了DCC用量、给电子试剂,如三苯胺(TPA)、2,6-二甲基吡啶(DMPy)对异丁烯正离子聚合转化率、产物分子量及其分布的影响.结果表明,在无给电子试剂存在时,DCC和体系中微量水均可与AlCl3产生络合竞争引起相继的引发竞争,聚合产物GPC谱图呈双峰分布,分子量分布宽,需要大量的引发剂DCC(DCC/H2O=5.3)来减少体系中微量水的不可控引发;在少量上述给电子试剂存在下,可提高DCC的引发效率,减少向单体链转移反应,提高聚合产物的分子量和使分子量分布呈较窄的单峰分布,即使在较低DCC用量下也可基本抑制体系中微量水的不可控引发,达到DCC定量引发,并得到分子量分布相对较窄(Mw/Mn≈2.3)的聚异丁烯产物.  相似文献   

5.
 Two poly(Schiff base)s (PDBT and PDPE) were synthesized by polycondensation of 1,10-phenanthroline-5,6-dione (PD) with 2,2′-diamino-4,4′-bithiazole (DABT) and 4,4′-diaminodiphenyl ether (DAPE), respectively. The structures of the polymers were determined by FTIR and element analysis. The metal (Fe2+, Ni2+) complexes were prepared from the polymers with FeSO4 or NiSO4, and the metal contents of the complexes were measured by complexometric titration. The magnetic behaviors of the complexes were examined as a function of magnetic field strength at 4 K and as a function of temperature (4-300 K) at a magnetic field strength of 2.4 ×106 A/m. The results show that the relative saturation magnetization of the PDBT complexes is higher than that of the corresponding PDPE complexes, and PDBT-Ni2+ and PDPE-Ni2+ are soft ferromagnets, while PDBT-Fe2+ and PDPE-Fe2+ exhibit the features of antiferromagnet.  相似文献   

6.
本文首次通过pH值控制沉淀法制备前驱物丁二酸钛肼复盐,并进一步热分解制备大比表面积钛黑颜料-黑色钛氧化物。通过比表面积(BET)、电子能谱(EDS)、X射线光电子能谱分析(XPS)、X射线粉末衍射(XRD)、场发射扫描电子显微镜(HRSEM)、物理吸附仪、激光粒度仪和Color i5型台式分光测色仪对黑色钛氧化物进行了表征,确定了黑色钛氧化物的组成为2TiO2·Ti2O3,其表面积为53.854 4 m2·g-1。并考察了酸源、水合肼用量、酸钛比、反应时间、pH、NaOH浓度和煅烧温度等各种反应参数对黑色钛氧化物的颗粒尺寸、分布均匀性和黑色度的影响。用元素分析仪和等离子体光谱仪测定了前驱物组成,确定其组成为[Ti(C4H4O4)2]0.85·2Ti2O3·6N2H4·3H2O,并探讨了黑色钛氧化物形成机理,为新型混合价材料黑色钛氧化物的制备提供重要参考依据。  相似文献   

7.
A series of substituted benzaldehydes were investigated as initiators for the living ring‐opening polymerization (LROP) of ε‐caprolactone (CL) mediated by titanium alkoxides obtained from the Cp2TiCl‐catalyzed single electron transfer (SET) reduction of the carbonyl group following the in situ reduction of Cp2TiCl2 with Zn. The aldehyde initiation was demonstrated (NMR) by the presence of the initiator derived fragment on the polycaprolactone (PCL) chain end. The effect of the nature of the aldehyde functionality (R‐Ph‐CHO, R = H, Cl, PhCH2O, NMe2, CH3O, NO2, and CHO), reagent ratios ([CL]/[aldehyde] = 50/1 to 400/1, [aldehyde]/[Cp2TiCl2] = 1/1 to 1/4, and [Cp2TiCl2]/[Zn] = 1/0.5 to 1/2), and temperature (T = 75–120 °C) was investigated over a wide range of values to reveal a living polymerization in all cases with an optimum observed at 90 °C with typical stoichiometric ratios of [CL]/[aldehyde]/[Cp2TiCl2]/[Zn] = 100/1/1/2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2869–2877, 2008  相似文献   

8.
《Mendeleev Communications》2022,32(2):198-201
To design luminescent lanthanide complexes containing both π- and σ-bonded antenna ligands in the coordination sphere, we synthesized 2,2′-bipyridine complexes of Nd, Tb and Gd with tri- and tetraphenyl substituted cyclopentadienyl ligands: [CpPh3LnCl2(bipy)(THF)] (CpPh3 = 1,2,4-triphenylcyclopenta- dienyl, bipy = 2,2′-bipyridine) and [CpPh4LnCl2(bipy)(THF)] (CpPh4 = tetraphenylcyclopentadienyl). Their crystal structures were determined by X-ray diffraction analysis. Optical spectroscopic and crystallographic data indicate the presence of a ligand-to-ligand charge transfer state.  相似文献   

9.
By the reaction of KCN with Cp2TiCl2 (Cp = η5-C5H5) in boiling methanol, bis(cyclopentadienyl)-methoxytitanium(IV) cyanide, Cp2Ti(OCH3)CN, is formed which in air is converted into the dinuclear oxygen-bridged derivative (Cp2TiCN)2O. By the same procedure, the bis(methylcyclopentadienyl) analogue [MeCp2TiCN]2O has been obtained. An X-ray diffraction study of (Cp2TiCN)2O has shown that the CN group acts as a unidentate ligand with a Ti? C bond length of 2.158 Å and a Ti? C? N bond angle of 177.7°, very close to linearity. The Ti? O bond distance, 1.836 Å, and the bond angle at the bridging O atom, 174.1°, are normal. The ligands are arranged in a nearly tetrahedral way around the Ti atoms. The structural results are compared to those for similar dinuclear titanium complexes.  相似文献   

10.
Two kinds of SiO2-supported Cp*TiCl3 (Cp* = η5-1,2,3,4,5-pentamethylcyclopentadienyl) catalysts were prepared, using SiO2 modified with 3-aminopropyltrimethoxysilane (N SiO2) and the ordinary SiO2 as the carrier. The copolymerization of ethylene and 1-octene was conducted over them combined with methylaluminoxane (MAO) as cocatalyst. From a detailed analysis of the produced copolymers, it was found that the N SiO2 supported Cp*TiCl3 catalyst gives poly(ethylene-co-1-octene) with a higher content of 1-octene and a narrower molar mass distribution as well as a narrower chemical composition.  相似文献   

11.
A series of new mono β‐diiminato titanium complexes [(N(Ar)C(CH3))2 CH]TiCl3 ( 3a : Ar = 2.6‐F2C6H3; 3b : Ar = C6F5; 3c : Ar = 2.6‐Me2C6H3) have been synthesized and characterized. The crystal structure of 3a revealed that the β‐diiminato ligand in our complex is more close to the η2‐coordination mode with little delocalization of the double bonds, which is different from the strong delocalization in the ligands of η5‐coordinated (Tolnacnac)TiCl3 and η2‐coordinated (Dipnacnac)ZrCl3. The significant electronic effects of fluoro‐substituents on the olefin polymerization activity of mono β‐diiminato titanium complexes were found. Titanium complexes with fluorine‐containing β‐diiminato ligands, on activation with MMAO, are extremely active catalysts for polymerization of ethylene. The activity of copolymerization of ethylene and 1‐hexene is higher than homopolymerization of ethylene and increases with the increase of 1‐hexene concentrations, which show the positive “comonomer effect.” The molar percentage of 1‐hexene incorporation and polymer microstructures can also be modulated by the initial comonomer concentrations. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 211–217, 2008  相似文献   

12.
A series of novel titanium(IV) complexes bearing tetradentate [ONNO] salan type ligands: [Ti{2,2′‐(OC6H3‐5‐t‐Bu)2‐NHRNH}Cl2] (Lig1TiCl2: R = C2H4; Lig2TiCl2: R = C4H8; Lig3TiCl2: R = C6H12) and [Ti{2,2′‐(OC6H2‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4TiCl2) were synthesized and used in the (co)polymerization of olefins. Vanadium and zirconium complexes: [ M{2,2′‐(OC6H3‐3,5‐di‐t‐Bu)2‐NHC6H12NH}Cl2] (Lig4VCl2: M = V; Lig4ZrCl2: M = Zr) were also synthesized for comparative investigations. All the complexes turned out active in 1‐octene polymerization after activation by MAO and/or Al(i‐Bu)3/[Ph3C][B(C6F5)4]. The catalytic performance of titanium complexes was strictly dependent on their structures and it improves for the increasing length of the aliphatic linkage between nitrogen atoms (Lig1TiCl2 << Lig2TiCl2 < Lig3TiCl2) and declines after adding additional tert‐Bu group on the aromatic rings (Lig3TiCl2 < Lig4TiCl2). The activity of all titanium complexes in ethylene polymerization was moderate and the properties of polyethylene was dependent on the ligand structure, cocatalyst type, and reaction conditions. The Et2AlCl‐activated complexes gave polymers with lover molecular weights and bimodal distribution, whereas ultra‐high molecular weight PE (up to 3588 kg mol?1) and narrow MWD was formed for MAO as a cocatalyst. Vanadium complex yielded PE with the highest productivity (1925.3 kg molv?1), with high molecular weight (1986 kg mol?1) and with very narrow molecular weight distribution (1.5). Copolymerization tests showed that titanium complexes yielded ethylene/1‐octene copolymers, whereas vanadium catalysts produced product mixtures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2111–2123  相似文献   

13.
Concerning the Reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] – Crystal Structure of [C(NMe2)3]2[FeCl4] The title compound forms by the reaction of Cp2TiCl2 with [C(NMe2)3][(CO)4FeC(O)NMe2] in THF solution. It crystallizes in the space group Pbcn with a = 1 566.6(3); b = 976.4(2); c = 1 580.4(4) pm; Z = 4; R = 3.8%. Each [FeCl4]2? in is surrounded by eight cations. Two cations each are connected with one Cl atom by relatively short H …? Cl contacts leading to a distortion of the tetrahedral geometry of the anion.  相似文献   

14.
Titanium complexes were prepared by the reaction of 2,2′-thiobis(6-tert-butyl-4-methylphenol) (TBP) with TiCl4 or Ti(OPri)4. These complexes in combination with methyalumoxane as cocatalyst are highly active towards ethylene and propene, giving polymers having high molecular weights. The polymerization activities for ethylene and propene are comparable to those of Cp2ZrCl2-MAO catalyst. Polypropylene obtained had extremely high molecular weight (Mw>6 million) and low regioregularity (30% of head-to-head and tail-to-tail linkages). Highly syndiotactic polystyrene was obtained with these catalysts with activity up to 27 kg polymer per g Ti and hour. Copolymerization of styrene with ethylene gave highly alternating copolymer with isotactic styrene units. These catalysts are also active toward both conjugated and nonconjugated dienes such as butadiene and 1,5-hexadiene. Polybutadiene had mainly cis-1,4-structure (98%). The structure of poly(1,5-hexadiene) is rather complicated, which is quite different from that prepared with heterogeneous TiCl3 catalysts.  相似文献   

15.
合成了三核苯甲酸铁配合物[Fe3O(OBZ)6(H2O)3](NO3)(acetone)5。测定了其晶体结构,其中三个铁形成等边三角形结构。配合物的变温磁化率表明,分子内三个铁之间有弱的反应磁性交换作用,J=-33.18cm^-1。分子之间则有更弱的反铁磁性交换作用,ZJ^'=-1.14cm^-1。  相似文献   

16.
First examples of transition metal complexes with HpicOH [Cu(picOH)2(H2O)2] ( 1 ), [Cu(picO)(2,2′‐bpy)]·2H2O ( 2 ), [Cu(picO)(4,4′‐bpy)0.5(H2O)]n ( 3 ), and [Cu(picO)(bpe)0.5(H2O)]n ( 4 ) (HpicOH = 6‐hydroxy‐picolinic acid; 2,2′‐bpy = 2,2′‐bipyridine; 4,4′‐bpy = 4,4′‐bipyridine; bpe = 1,2‐bis(4‐pyridyl)ethane) have been synthesized and characterized by single‐crystal X‐ray diffraction. The results show that HpicOH ligand can be in the enol or ketonic form, and adopts different coordination modes under different pH value of the reaction mixture. In complex 1 , HpicOH ligand is in the enol form and adopts a bidentate mode. While in complexes 2 – 4 , as the pH rises, HpicOH ligand becomes in the ketonic form and adopts a tridentate mode. The coordination modes in complexes 1 – 4 have not been reported before. Because of the introduction of the terminal ligands 2,2′‐bpy, complex 2 is of binuclear species; whereas in complexes 3 and 4 , picO ligands together with bridging ligands 4,4′‐bpy and bpe connect CuII ions to form 2D nets with (123)2(12)3 topology.  相似文献   

17.
Summary.  Rh(III) polypyridine complexes ([Cp *Rh(ppy)(H2O)]2+; ppy = 2,2′-bipyridine, 2,2′-bipyridine-4,4′-dicarboxylate, o-phenanthroline, tetrahydro-4,4′-dialkyl-bis-oxazole) oxidize in organic or aqueous alkaline solution primary and secondary alcohols to aldehydes or ketones and are thereby reduced to the Rh(I) complexes Cp *Rh(ppy). The Rh(III) form can be regenerated byoxidants like pyruvate or oxygen, making the reaction quasi-catalytic. The reaction follows anautocatalytic pathway; hydrogen transfer from the α-CH2 group of an alcoholate complex [Cp *Rh(ppy)(OR)]+ to Cp *Rh(I)(ppy) is suggested to yield the Rh(II) intermediate Cp *Rh(ppy)H as the key and rate determining step. The knowledge of Rh(III)/Rh(I) redox potentials allows to estimate the thermodynamic driving force of the reaction which is not more than about 300 mV.  相似文献   

18.
The ruthenium aqua complexes [Ru(H2O)2(bipy)2](OTf)2, [cis‐Ru(6,6′‐Cl2‐bipy)2(OH2)2](OTf)2, [Ru(H2O)2(phen)2](OTf)2, [Ru(H2O)3(2,2′:6′,2′′‐terpy)](OTf)2 and [Ru(H2O)3(Phterpy)](OTf)2 (bipy=2,2′‐bipyridine; OTf?=triflate; phen=phenanthroline; terpy= terpyridine; Phterpy=4′‐phenyl‐2,2′:6′,2′′‐terpyridine) are water‐ and acid‐stable catalysts for the hydrogenation of aldehydes and ketones in sulfolane solution. In the presence of HOS(O)2CF3 (triflic acid) as a dehydration co‐catalyst they directly convert 1,2‐hexanediol to n‐hexanol and hexane. The terpyridine complexes are stable and active as catalysts at temperatures ≥250 °C and in either aqueous sulfolane solution or pure water convert glycerol into n‐propanol and ultimately propane as the final reaction product in up to quantitative yield. For the terpy complexes the active catalyst is postulated to be a carbonyl species [(4′‐R‐2,2′:6′,2′′‐terpy)Ru(CO)(H2O)2](OTf)2 (R=H, Ph) formed by the decarbonylation of aldehydes (hexanal for 1,2‐hexanediol and 3‐hydroxypropanal for glycerol) generated in the reaction mixture through acid‐catalyzed dehydration. The structure of the dimeric complex [{(4′‐phenyl‐2,2′:6′,2′′‐terpy)Ru(CO)}2(μ‐OCH3)2](OTf)2 has been determined by single crystal X‐ray crystallography (Space group P (a=8.2532(17); b=12.858(3); c=14.363(3) Å; α=64.38(3); β=77.26(3); γ = 87.12(3)°, R=4.36 %).  相似文献   

19.
A series of monocyclopentadienyl titanium complexes containing a pendant amine donor on a Cp group ( A = CpTiCl3, B = CpNTiCl3, C = CpNTiCl2TEMPO, for Cp = C5H5, CpN = C5H4CH2CH2N(CH3)2, and TEMPO = 2,2,6,6‐tetramethylpiperidine‐N‐oxyl) are investigated for styrene homopolymerization and ethylene–styrene (ES) copolymerization. When activated by methylaluminoxane at 70 °C, complexes with the amine group ( B and C ) are active for styrene homopolymerization and afford syndiotactic polystyrene (sPS). The copolymerizations of ethylene and styrene with B and C yield high‐molecular weight ES copolymer, whereas complex A yields mixtures of sPS and polyethylene, revealing the critical role that the pendant amine has on the polymerization behavior of the complexes. Fractionation, NMR, and DSC analyses of the ES copolymers generated from B and C suggest that they contain sPS. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1579–1585, 2010  相似文献   

20.
A study of the coordination chemistry of different amidato ligands [(R)N?C(Ph)O] (R=Ph, 2,6‐diisopropylphenyl (Dipp)) at Group 4 metallocenes is presented. The heterometallacyclic complexes [Cp2M(Cl){κ2N,O‐(R)N?C(Ph)O}] M=Zr, R=Dipp ( 1 a ), Ph ( 1 b ); M=Hf, R=Ph ( 2 )) were synthesized by reaction of [Cp2MCl2] with the corresponding deprotonated amides. Complex 1 a was also prepared by direct deprotonation of the amide with Schwartz reagent [Cp2Zr(H)Cl]. Salt metathesis reaction of [Cp2Zr(H)Cl] with deprotonated amide [(Dipp)N?C(Ph)O] gave the zirconocene hydrido complex [Cp2M(H){κ2N,O‐(Dipp)N?C(Ph)O}] ( 3 ). Reaction of 1 a with Mg did not result in the desired Zr(III) complex but in formation of Mg complex [(py)3Mg(Cl) {κ2N,O‐(Dipp)N?C(Ph)O}] ( 4 ; py=pyridine). The paramagnetic complexes [Cp′2Ti{κ2N,O‐(R)N?C(Ph)O}] (Cp′=Cp, R=Ph ( 7 a ); Cp′=Cp, R=Dipp ( 7 b ); Cp′=Cp*, R=Ph ( 8 )) were prepared by the reaction of the known titanocene alkyne complexes [Cp2′Ti(η2‐Me3SiC2SiMe3)] (Cp′=Cp ( 5 ), Cp′=Cp* ( 6 )) with the corresponding amides. Complexes 1 a , 2 , 3 , 4 , 7 a , 7 b , and 8 were characterized by X‐ray crystallography. The structure and bonding of complexes 7 a and 8 were also characterized by EPR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号