首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integral enthalpies of dissolution Δsol H m of L-cysteine in mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at concentrations of organic solvents of up to 0.37 mole fraction were measured by calorimetry of dissolution. The standard values of the dissolution enthalpies (Δsol H°) and the transfer enthalpies (Δtr H°) of amino acid from water to the mixed solvent were calculated. It was shown that the calculated enthalpic coefficients of the pair interactions of L-cysteine with cosolvent molecules have positive values. The obtained data are interpreted from the viewpoint of the prevalence of different types of interactions in the solutions and influence of the cosolvents nature on the thermochemical characteristics of amino acid dissolution.  相似文献   

2.
By the method of dissolution calorimetry integral enthalpies of dissolution Δsol H m of L-serine are measured in the mixtures of water with glycerol, ethylene glycol, and 1,2-propylene glycol at the concentration of the organic solvent up to 0.42 mole fraction. The standard values of enthalpies of dissolution (Δsol H 0) and transfer (Δtr H 0) of amino acids from water to mixed solvents are calculated. The calculated values of the enthalpy coefficients of pair interactions of L-serine with the molecules of co-solvents are positive. The data obtained are interpreted in terms of prevalence of different types of interactions in solutions and the influence of nature of co-solvents on the thermochemical characteristics of the dissolved amino acids.  相似文献   

3.
l-Lysine (l-Lys) in living bodies is critical for metabolism; therefore, determination of its levels in food is important. Most enzymatic methods for l-Lys analysis are performed using l-lysine oxidase (LyOx), but commercially manufactured LyOx is generally not highly selective for l-Lys among amino acids. We previously isolated LyOx as an antibacterial protein secreted from the skin of the rockfish Sebastes schlegeli. In the present study, we developed an optical enzyme sensor system for rapid and continuous determination of l-Lys using this LyOx. The system comprised an immobilized LyOx membrane, an optical oxygen probe, a flow system, and a personal computer. The amount of l-Lys was detected as a decrease in the oxygen concentration due to the LyOx reaction. The specificity of the sensor was examined against various amino acids. The sensor response was specific for l-Lys. Good reproducibility was obtained in 58 assays. The response of the sensor using commercially prepared LyOx was unstable compared with the response using LyOx isolated in our laboratory. Our sensor system could be used for 5 weeks without our having to change the enzyme membrane. The calibration curve for a standard l-Lys solution was linear from 0.1 to 3.0 mmol L−1. One assay could be completed within 2 min. The sensor was applied to determine the l-Lys content in food samples such as bonito cooking water and scallop hepatopancreas. The values obtained using the sensor and conventional high-performance liquid chromatography methods were well correlated.  相似文献   

4.
Samples of poly(l,l-lactide)-block-poly(ethylene glycol)-block-poly(l,l-lactide) (PLLA-PEG-PLLA) were synthesized from l,l-lactide polymerization using stannous 2-ethylhexanoate, Sn(Oct)2 as initiator and di-hydroxy-terminated poly(ethylene glycol) (PEG) (M n  = 4000 g mol−1) as co-initiator. The chemical linkage between the PEG segment and the PLA segments was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetry analysis (TG) revealed the copolymers composition and was capable to show the deleterious effect of an excess of Sn(Oct)2 in the polymer thermal stability, while Differential Scanning Calorimetry (DSC) allowed the observation of the miscibility between the PLLA and PEG segments in the different copolymers.  相似文献   

5.
The integral enthalpies of dissolution Δsol H m for N-acetylglycine in aqueous solutions of glycerol, ethylene glycol and 1,2-propylene glycol are measured via solution calorimetry. The standard enthalpies of dissolution (Δsol Н 0) and transfer (Δtr Н 0) for N-acetylglycine from water to aqueous solutions of polyhydric alcohols are calculated from experimental data. Positive values of enthalpy coefficients of pair interactions h xy for amino acids and polyol molecules are calculated using the McMillan–Mayer theory. The results are discussed using an approach for evaluating different types of interactions in ternary systems and the effect the structural features of interacting biomolecules have on the thermochemical characteristics of N-acetylglycine dissolution.  相似文献   

6.
Corynebacterium crenatum SYPA 5-5 is an aerobic and industrial l-arginine producer. It was proved that the Corynebacterium glutamicum/Escherichia coli shuttle vector pJC1 could be extended in C. crenatum efficiently when using the chloramphenicol acetyltransferase gene (cat) as a reporter under the control of promoter tac. The expression system was applied to over-express the gene vgb coding Vitreoscilla hemoglobin (VHb) to further increase the dissolved oxygen in C. crenatum. As a result, the recombinant C. crenatum containing the pJC-tac-vgb plasmid expressed VHb at a level of 3.4 nmol g−1, and the oxygen uptake rates reached 0.25 mg A562−1 h−1 which enhanced 38.8% compared to the wild-type strain. Thus, the final l-arginine concentration of the batch fermentation reached a high level of 35.9 g L−1, and the biomass was largely increased to 6.45 g L−1, which were 17.3% and 10.5% higher than those obtained by the wild-type strain, respectively. To our knowledge, this is the first report that the efficient expression system was constructed to introduce vgb gene increasing the oxygen and energy supply for l-arginine production in C. crenatum, which supplies a good strategy for the improvement of amino acid products.  相似文献   

7.
Purification and characterization of halotolerant, thermostable alkaline l-glutaminase from a Bacillus sp. LKG-01 (MTCC 10401), isolated from Gangotri region of Uttarakhand Himalaya, is being reported in this paper. Enzyme has been purified 49-fold from cell-free extract with 25% recovery (specific activity 584.2 U/mg protein) by (NH4)2SO4 precipitation followed by anion exchange chromatography and gel filtration. Enzyme has a molecular weight of 66 kDa. l-Glutaminase is most active at pH 11.0 and stable in the pH range 8.0–11.0. Temperature optimum is 70 °C and is completely stable after 3 h pre-incubation at 50 °C. Enzyme reflects more enhanced activity with 1–20% (w/v) NaCl, which is further reduced to 80% when NaCl concentration was increased up to 25%. l-Glutaminase is almost active with K+, Zn2+, and Ni2+ ions and K m and V max values of 240 μM and 277.77 ± 1.1 U/mg proteins, respectively. Higher specific activity, purification fold, better halo-tolerance, and thermostability would make this enzyme more attractive for food fermentation with respect to other soil microbe derived l-glutaminase reported so far.  相似文献   

8.
Glucose 2-oxidase (pyranose oxidase, pyranose:oxygen-2-oxidoreductase, EC 1.1.3.10) from Coriolus versicolor catalyses the oxidation of d-glucose at carbon 2 in the presence of molecular O2 producing d-glucosone (2-keto-glucose and d-arabino-2-hexosulose) and H2O2. It was used to convert d-glucose into d-glucosone at moderate pressures (i.e. up to 150 bar) with compressed air in a modified commercial batch reactor. Several parameters affecting biocatalysis at moderate pressures were investigated as follows: pressure, [enzyme], [glucose], pH, temperature, nature of fluid and the presence of catalase. Glucose 2-oxidase was purified by immobilized metal affinity chromatography on epoxy-activated Sepharose 6B-IDA-Cu(II) column at pH 6.0. The rate of bioconversion of d-glucose increased with the pressure since an increase in the pressure with compressed air resulted in higher rates of conversion. On the other hand, the presence of catalase increased the rate of reaction which strongly suggests that H2O2 acted as inhibitor for this reaction. The rate of bioconversion of d-glucose by glucose 2-oxidase in the presence of either nitrogen or supercritical CO2 at 110 bar was very low compared with the use of compressed air at the same pressure. The optimum temperature (55°C) and pH (5.0) of d-glucose bioconversion as well as kinetic parameters for this enzyme were determined under moderate pressure. The activation energy (E a) was 32.08 kJ mol−1 and kinetic parameters (V max, K m, K cat and K cat/K m) for this bioconversion were 8.8 U mg−1 protein, 2.95 mM, 30.81 s−1 and 10,444.06 s−1 M−1, respectively. The biomass of C. versicolor as well as the cell-free extract containing glucose 2-oxidase activity were also useful for bioconversion of d-glucose at moderate pressures. The enzyme was apparently stable at moderate pressures since such pressures did not affect significantly the enzyme activity.  相似文献   

9.
The kinetics and mechanism of the substitution reaction between [Cr(H2O)6]3+ and l-Dopa in aqueous medium has been studied over the range 1.8 ≤ pH ≤ 2.6, 1.68 × 10−2 mol dm−3 ≤ [Dopa] ≤ 5.04 × 10−2 mol dm−3, I = 0.1 mol dm−3 (KNO3) at 50 °C. The reaction takes place via an outer sphere association between Cr3+ and l-Dopa followed by chelation. The product was characterized by physicochemical and infrared spectroscopic methods. The antiparkinsonian activity of the product was found to be higher than that of l-Dopa.  相似文献   

10.
The polymerization of o-phenylenediamine (OPD) on l-tyrosine (Tyr) functionalized glassy carbon electrode (GCE) and its electro-catalytic oxidation towards ascorbic acid (AA) had been studied in this report. l-Tyrosine was first covalently grafted on GCE surface via electrochemical oxidation, which was followed by the electrochemical polymerization of OPD on the l-tyrosine functionalized GCE. Then, the poly(o-phenylenediamine)/l-tyrosine composite film modified GCE (POPD-Tyr/GCE) was obtained. X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscope (SEM), and electrochemical techniques have been used to characterize the grafting of l-tyrosine and the polymerization and morphology of OPD film on GCE surface. Due to the doping of the carboxylic functionalities in l-tyrosine molecules, the POPD film showed good redox activity in neutral medium, and thus, the POPD-Tyr/GCE exhibited excellent electrocatalytic response to AA in 0.1 mol l−1 phosphate buffer solution (PBS, pH 6.8). The anode peak potential of AA shifted from 0.58 V at GCE to 0.35 V at POPD-Tyr/GCE with a greatly enhanced current response. A linear calibration graph was obtained over the AA concentration range of 2.5 × 10−4–1.5 × 10–3 mol l−1 with a correlation coefficient of 0.9998. The detection limit (3δ) for AA was 9.2 × 10−5 mol l−1. The modified electrode showed good stability and reproducibility and had been used for the determination of AA content in vitamin C tablet with satisfactory results.  相似文献   

11.
The kinetics of the interaction of glycine-l-leucine (Glyleu) with cis-[Pt(cis-dach)(OH2)2]2+ (dach = 1,2-diaminocyclohexane) has been studied spectrophotometrically as a function of [cis-[Pt(cis-dach)(OH2)2]2+], [Glyleu] and temperature at pH 4.0, where the complex exists predominantly as the diaqua species and Glyleu as a zwitterion. The substitution reaction shows two consecutive steps: the first is the ligand-assisted anation and the second is the chelation step. The activation parameters for both the steps were evaluated using Eyring’s equation. The low ∆H1 (51.9 ± 2.8 kJmol−1) and large negative value of ∆S1 (−152 ± 8 JK−1mol−1) as well as ∆H2 (54.4 ± 1.7 kJmol−1) and ∆S2 (−162 ± 5 JK−1mol−1) indicate an associative mode of activation for both the aqua ligand substitution processes.  相似文献   

12.
A three-level central composite design of the Response Surface Methodology and the Artificial Neural Network-linked Genetic Algorithm were applied to find the optimum operating conditions for enhanced production of l-asparaginase by the submerged fermentation of Aspergillus terreus MTCC 1782. The various effects of the operating conditions, including temperature, pH, inoculum concentration, agitation rate, and fermentation time on the experimental production of l-asparaginase, were fitted to a second-order polynomial model and non-linear models using Response Surface Methodology and the Artificial Neural Network, respectively. The Artificial Neural Network model fitted well, achieving a higher coefficient of determination (R 2 = 0.999) than the second-order polynomial model (R 2 = 0.962). The l-asparaginase activity (38.57 IU s mL−1) predicted under the optimum conditions of 32.08°C, pH of 5.85, inoculum concentration of 1 vol. %, agitation rate of 123.5 min−1, and fermentation time of 55.1 h was obtained using the Artificial Neural Networklinked Genetic Algorithm in very close agreement with the activity of 37.84 IU mL−1 achieved in confirmation experiments.  相似文献   

13.
The integral enthalpies of dissolution Δsol H m of L-α-serine and L-α-asparagine in mixtures of water with KCl were measured in electrolyte concentrations of up to 4 mol/kg at 298.15 K. The standard enthalpies of dissolution (Δsol H o) and transfer (Δtr H o) of amino acids from water to aqueous solutions of KCl were calculated. The enthalpic pair interaction coefficients h xy of biomolecules with KCl were estimated within the McMillan-Mayer theory. The changing nature of the interaction between the components of the solution (depending on the structure of the dissolved biosubstance side substituents) is shown on the basis of data we obtained earlier for amino acids and dipeptides series. Estimates of the contributions from the electrostatic and other interactions of dipolar ions of amino acids and dipeptides with ions of electrolyte KCl in the enthalpic pair interaction coefficients h xy are obtained using the Kirkwood approach.  相似文献   

14.
d-Lactic and l-lactic acids were simultaneously determined by means of a column-switching high-performance liquid chromatography (HPLC) with fluorescence detection. As a fluorescence reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was employed for the fluorescence derivatization of lactic acid. The proposed HPLC system adopted both octylsilica (Cadenza CD-C8) and amylose-based chiral columns (CHIRALPAK AD-RH), which proved to give a sufficient enantiomeric separation of the lactic acid derivatives with a separation factor () of 1.32 and a resolution (Rs) of 1.98. Moreover, the features of the first elution of d-lactic acid peak in the proposed HPLC were convenient for the determination of trace amount of serum d-lactic acid, which is known to increase under diabetes. Intra-day and inter-day accuracies were in the range of 90.5–101.2 and 89.0–100.7%, and the intra-day and inter-day precisions were 0.3–1.2 and 0.4–4.8%, respectively. The proposed method was applied to determine d-lactic and l-lactic acids in human serum of normal subjects and diabetic patients, showing that both d-lactic and l-lactic acid concentrations were significantly increased in the serum of diabetic patients (n=31) as compared with normal subjects (n=21). This fact was found for the first time owing to the development of the proposed HPLC method which is able to determine d-lactic and l-lactic acid simultaneously. Finally, serum d-lactic acid concentrations determined by the proposed HPLC method were compared with those from a reported enzymatic assay, and the smaller p value between normal subjects and diabetic patients was shown by the proposed HPLC method.  相似文献   

15.
The kinetics of the intra-molecular electron transfer of an adduct of l-ascorbic acid and the [Fe3IIIO(CH3COO)6(H2O)3]+ cation in aqueous acetate buffer was studied spectrophotometrically, over the ranges 2.55 ≤ pH ≤ 3.74, 20.0 ≤ θ ≤ 35.0 °C, at an ionic strength of 0.50 and 1.0 mol dm−3 (NaClO4). The reaction of l-ascorbic acid and the complex cation involves the rapid formation of an adduct species followed by a slower reduction in the iron centres through consecutive one-electron transfer processes. The final product of the reaction is aqueous iron(II) in acetate buffer. The proposed mechanism involves the triaqua and diaqua-hydroxo species of the complex cation, both of which form adducts with l-ascorbic acid. At 25 °C, the equilibrium constant for the adduct formation was found to be 86 ± 15 and 5.8 ± 0.2 dm3 mol−1 for the triaqua and diaqua-hydroxo species, respectively. The kinetic parameters derived from the rate expression have been found to be: k 0 = (1.12 ± 0.02) × 10−2 s−1 for the combined spontaneous decomposition and k 1 = (4.47 ± 0.06) × 10−2 s−1H 1 = 51.0 ± 2.3 kJ mol−1, ΔS 1 = −100 ± 8 J K−1 mol−1), k 2 = (4.79 ± 0.38) × 10−1 s−1H 2 = 76.5 ± 0.8 kJ mol−1, ΔS 2 = 6 ± 3 J K−1 mol−1) for the triaqua and diaqua-hydoxo species, respectively.  相似文献   

16.
Amphiphilic polymers Cn-PHEG consisting of water-soluble poly[N 5-2-(hydroxyethyl) l-glutamine] (PHEG) and hydrophobic alkyl chain (carbon number n = 12, 14, 16, or 18) attached at the PHEG terminal was prepared, and association behavior and structure of associate for Cn-PHEG in selective solvent (water/ethylene glycol mixed solvent) have been investigated. α-Helix content of PHEG block for all the polymers increased with weight fraction of ethylene glycol in the mixed solvent (W EG). By light scattering measurements, formation of a small micelle was suggested for C14-, C16-, and C18-PHEG when W EG = 0. With the increase in W EG, appearance of a larger associate was revealed for C16- and C18-PHEG. Evaluated molecular weight and radius of gyration suggested that the micelle is star-like sphere when W EG = 0 and worm-like cylinder when W EG = 0.7. C12-PHEG did not demonstrate any distinct micellization behavior because of the weak hydrophobicity of C12 chain.  相似文献   

17.

Abstract  

Gallium complexes of l-glutamine have been studied polarographically in aqueous media. The reduction was found to be irreversible and diffusion controlled in the presence of 0.1 M KNO3 and 0.002% Triton-x-100. The values of kinetic parameters, transfer coefficient (α n), and formal rate constant ( k\textf,\texth0 k_{{{\text{f}},{\text{h}}}}^{0} ) of the electrode reactions were calculated by Koutecky's method. The stability constants and composition of the gallium(III)-l-glutamine complexes were evaluated with the help of the Deford-Hume method. The values of stability constants of 1:1, 1:2, and 1:3 gallium(III)-l-glutamine complexes are 1.35, 6.5, and 1,350 at 30 °C, respectively. The values of thermodynamic parameters, the free energy of activation, the enthalpy of activation, and the entropy of activation have been determined at 30 °C. The formation of the metal complexes has been found to be non-spontaneous, endothermic in nature, and entropically favorable at higher temperature.  相似文献   

18.
The enthalpies of complexation between N,N-bis(carboxymethyl)aspartic acid (H4Y) and the Pb2+ ion at 298.15 K were determined from calorimetric data for a wide range of the ionic strengths (KNO3). The thermodynamic characteristics ΔH, ΔG, and ΔS, of formation of the complexes PbHY and PbY2− were calculated for zero and fixed ionic strengths. The results obtained were interpreted.  相似文献   

19.
The integral enthalpies of solution (Δsol H m ) of L-serine in water-alcohol (ethanol, n-propanol, isopropanol) mixtures were measured over the range of alcohol concentrations up to 0.32 mole fractions. The standard enthalpy of solution (Δsol H°), enthalpy of transfer of L-serine from water into a mixed solvent (Δtr H°), and enthalpy of solvation (Δsolv H°) were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of mixtures had extrema. The calculated enthalpy coefficients of the pair interactions of L-serine with alcohol molecules were positive and increased along the series ethanol, n-propanol, isopropanol. The data obtained were interpreted in terms of different types of interactions in solutions and the influence of the nature of amino acid residues on the thermochemical solution characteristics. Original Russian Text ? I.N. Mezhevoi, V.G. Badelin, 2008, published in Zhurnal Fizicheskoi Khimii, 2008, Vol. 82, No. 4, pp. 789–791.  相似文献   

20.
In this study, the fed-batch fermentation technique was applied to improve the yield of l-threonine produced by Escherichia coli TRFC. Various fermentation substrates and conditions were investigated to identify the optimal carbon source, its concentration and C/N ratio in the production of l-threonine. Sucrose was found to be the optimal initial carbon source and its optimal concentration was determined to be 70 g/L based on the results of fermentations conducted in a 5-L jar fermentor using a series of fed-batch cultures of E. coli TRFC. The effects of glucose concentration and three different feeding methods on the production of l-threonine were also investigated in this work. Our results showed that the production of l-threonine by E. coli was enhanced when glucose concentration varied between 5 and 20 g/L with DO-control pulse fed-batch method. Furthermore, the C/N ratio was a more predominant factor than nitrogen concentration for l-threonine overproduction and the optimal ratio of ammonium sulfate to sucrose (g/g) was 30. Under the optimal conditions, a final l-threonine concentration of 118 g/L was achieved after 38 h with the productivity of 3.1 g/L/h (46% conversion ratio from glucose to threonine).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号