首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this study, we considered the extended polar decomposition using a more general approach than the one provided by Boulanger and Hayes [Int. J. Non-Linear Mech. 36 (2001) 399–420]. We showed that the procedure of the decomposition could be simplified by considering its rotation tensor. Our method is illustrated by examples.  相似文献   

2.
In this paper, waves propagating in Mooney-Rivlin and neo-Hookean non-linear elastic materials subjected to a homogeneous pre-strain are considered. In a previous paper, Boulanger and Hayes [Finite-amplitude waves in deformed Mooney-Rivlin materials, Q. J. Mech. Appl. Math. 45 (1992) 575-593] showed, for deformed Mooney-Rivlin materials, that the superposition of two finite-amplitude shear waves polarized in different directions (orthogonal to each other) and propagating along the same direction is an exact solution of the equations of motion. The two waves do not interact. Here, we are interested in superpositions of waves propagating in different directions. Two types of superpositions are considered: superpositions of waves polarized in the same direction, and also superposition of waves polarized in different directions. It is shown that such superpositions are exact solutions of the equations of motion with appropriate choices of the propagation and polarization directions.  相似文献   

3.
First of all the deformation is considered of two infinitesimal material line elements lying along vectors M,N emanating from a particle at X in a body. For all M,N lying in a given plane, an identity is derived relating the stretches along M,N and the angles of the pair of infinitesimal material line elements before and after deformation. Then, the deformation is considered of three non-coplanar infinitesimal material line elements lying along vectors M,N,P emanating from a particle at X in a body. An identity is derived relating the stretches along M,N,P and the angles between the three pairs of infinitesimal material line elements before and after deformation. The identity is factored leading to easy interpretation. The special case of infinitesimal strain is considered.   相似文献   

4.
Our earlier derived bounds on the elastic moduli of two-dimensional random polycrystals [1, 2] involve a geometric restriction through an assumption on the form of an isotropic eight-rank tensor. The general form of the tensor is used in this study to reconstruct the bounds, which are expected to approach the scatter range for the moduli of the irregular aggregate.  相似文献   

5.
Equations of geometrically nonlinear theory of elasticity with finite displacements and strains are analyzed. The equations are composed using three versions of physical relations and applied to solve the problem of tension-compression of a straight bar. It is shown that the use of the classical relations between the components of the stress tensor and the Cauchy-Green strain tensor in the problem of compression of the bar results in the appearance of “spurious” static loss of stability such that the bar axis remains straight if the stresses are referred to unit areas before the deformation (conditional stresses). However, in the problem of tension, the classical relations do not permit one to describe the phenomenon of static instability (neck formation as the plastic instability occurs). These drawbacks disappear if one uses the third version of the physical equations, composed as relations between the true stresses referred to unit areas of the deformed faces on which they act and the true elongations and shears. The relations of the third version are most correct; they permit one to pass to self-consistent equations of elasticity and plasticity under small strains and finite displacements, and they should be recommended for practical use. As an example, such relations are composed for the flow theory.  相似文献   

6.
An analysis is presented of stretching, shearing and spin of material line elements in a continuous medium. It is shown how to determine all pairs of material line elements at a point x, at time t, which instantaneously are not subject to shearing. For a given pair not subject to shearing, a formula is presented for the determination of a third material line element such that all three form a triad not subject to shearing, instantaneously. It is seen that there is an infinity of such triads not subject to shearing. A new decomposition of the velocity gradient L is introduced. In place of the classical decomposition of Cauchy and Stokes, L=d+w, where d is the stretching tensor and w is the spin tensor, the new decomposition is L=?+, where ?, called the ldquo;modified” stretching tensor, is not symmetric, and , called the “modified” spin tensor, is skew-symmetric – the tensor ? being chosen so that it has three linearly independent real right (and left) eigenvectors. The physical interpretation of this decomposition is that the material line elements along the three linearly independent right eigenvectors of ? instantaneously form a triad not subject to shearing. They spin as a rigid body with angular velocity μ (say) associated with . Also, for each decomposition L=?+, there is a decomposition L=? T +, where is also skew-symmetric. The triad of material line elements along the right eigenvectors of ? T (the set reciprocal to the right eigenvectors of ?) is also instantaneously not subject to shearing and rotates with angular velocity (say) associated with . It is seen that the vorticity vector ω is the mean of the two angular velocities μ and , ω =(μ+)/2. For irrotational motion, ω =0, so that μ=-; any triad of material line elements suffering no shearing rotates with angular velocity equal and opposite to that of the reciprocal triad of material line elements. It is proved that provided d is not spherical, there is an infinity of choices for ? and in the decomposition L=?+. Two special types of decompositions are introduced. The first type is called “CCS-decomposition” (where CCS is an abbreviation for Central Circular Section). It is associated with the infinite family of triads (not subject to shearing) with a common edge along the normal to one plane of central circular section of an ellipsoid ? associated with the stretching tensor, and the two other edges arbitrary in the other plane of central circular section of ?. There are two such CCS-decompositions. The second type is called “triangular decomposition”, because, in a rectangular cartesian coordinate system, ? has three off-diagonal zero elements. There are six such decompositions. Received 14 November 2000 and accepted 2 August 2001  相似文献   

7.
We present a constitutive equation for non-Newtonian materials which is capable of predicting, independently, steady state rheological material functions both in shear and in extension. The basic assumption is that the extra-stress tensor is a function of both the rate-of-strain tensor, D, and the persistence-of-straining tensor, -\boldsymbol{P}=\boldsymbol{D}\overline{\boldsymbol{W}}-\overline{\boldsymbol {W}}\boldsymbol{D}, introduced in Thompson and de Souza Mendes (Int. J. Eng. Sci. 43(1–2):79–105, 2005). The resulting equation falls within the category of constitutive equations of the form t=t(D,[`(W)])\boldsymbol{\tau}=\boldsymbol{\tau}(\boldsymbol {D},\overline{\boldsymbol{W}}), with the advantage of eliminating the undesirable stress jumps that may occur when [`(W)]\overline {\boldsymbol{W}} becomes locally undetermined. We also show that this formulation is not restricted to motions with constant relative principle stretch history (MWCRPSH), in contrast to what is suggested in the literature. The same basis of tensors that comes from representation theorems also arises from an elastic constitutive equation based on the difference between the Jauman and the Harnoy convected time derivatives, in the limit of small values of the Deborah number.  相似文献   

8.
Johansson  S.  Engqvist  J.  Tryding  J.  Hall  S. A. 《Experimental Mechanics》2021,61(3):581-608
Background

Experimental analyses of the 3D strain field evolution during loading allows for better understanding of deformation and failure mechanisms at the meso- and microscale in different materials. In order to understand the auxetic behaviour and delamination process in paperboard materials during tensile deformation, it is essential to study the out-of-plane component of the strain tensor that is, in contrast to previous 2D studies, only achievable in 3D.

Objective

The main objective of this study is to obtain a better understanding of the influence of different out-of-plane structures and in-plane material directions on the deformation and failure mechanisms at the meso- and microscale in paperboard samples.

Methods

X-ray tomography imaging during in-situ uniaxial tensile testing and Digital Volume Correlation analysis was performed to investigate the 3D strain field evolution and microscale mechanical behaviour in two different types of commercial paperboards and in two material directions. The evolution of sample properties such as the spatial variation in sample thickness, solid fraction and fibre orientation distribution were also obtained from the images. A comprehensive analysis of the full strain tensor in paperboards is lacking in previous research, and the influence of material directions and out-of-plane structures on 3D strain field patterns as well as the spatial and temporal quantification of the auxetic behaviour in paperboard are novel contributions.

Results

The results show that volumetric and deviatoric strain, dominated by the out-of-plane normal strain component of the strain tensor, localize in the out-of-plane centre already in the initial linear stress-strain regime. In-plane strain field patterns differ between samples loaded in the Machine Direction (MD) and Cross Direction (CD); in MD, strain localizes in a more well-defined zone close to the notches and the failure occurs abruptly at peak load, resulting in angular fracture paths extending through the stiffer surface planes of the samples. In CD, strain localizes in more horizontal and continuous bands between the notches and at peak load, fractures are not clearly visible at the surfaces of CD-tested samples that appear to fail internally through more well-distributed delamination.

Conclusions

In-plane strain localization preceded a local increase of sample thickness, i.e. the initiation of the delamination process, and at peak load, a dramatic increase in average sample thickening occurred. Different in-plane material directions affected the angles and continuity of the in-plane strain patterns as well as the sample and fracture properties at failure, while the out-of-plane structure affected how the strain fields distributed within the samples.

  相似文献   

9.
This paper completes an earlier study (Tanuma and Man, Journal of Elasticity, 85, 21–37, 2006) where we derive a first-order perturbation formula for the phase velocity of Rayleigh waves that propagate along the free surface of a macroscopically homogeneous, anisotropic, prestressed half-space. We adopt the formulation of linear elasticity with initial stress and assume that the deviation of the prestressed anisotropic medium from a suitably-chosen, comparative, unstressed and isotropic state be small. No assumption, however, is made on the material anisotropy of the incremental elasticity tensor. With the help of the Stroh formalism, here we derive first-order perturbation formulas for the changes in polarization ratio and phase shift of Rayleigh waves from their respective comparative isotropic value. Examples are given, which show that the perturbation formulas for phase velocity and polarization ratio can serve as a starting point for investigations on the possible advantages of using Rayleigh-wave polarization, as compared with using wave speed, for acoustoelastic measurement of stress.   相似文献   

10.
The paper is concerned with a formulation of anisotropic finite strain inelasticity based on the multiplicative decomposition of the deformation gradient F=FeFp. A major feature of the theory is its invariance with respect to rotations superimposed on the inelastic part of the deformation gradient. The paper motivates and shows how such an invariance can be achieved. At the heart of the formulation is the mixed-variant transformation of the structural tensor, defined as the tensor product of the privileged directions of the material as given in a reference configuration, under the action of Fp. Issues related to the plastic material spin are discussed in detail. It is shown that, in contrast to the isotropic case, any flow function formulated purely in terms of stress quantities, necessarily exhibits a non-vanishing plastic material spin. The possible construction of spin-free rates is discussed as well, where it is shown that the flow rule must then depend not only on the stress but on the strain as well.  相似文献   

11.
In a finite deformation at a particle of a continuous body, a triad of infinitesimal material line elements is said to be “unsheared” when the angles between the three pairs of line elements of the triad suffer no change. In a previous paper, it has been shown that there is an infinity of unsheared oblique triads. With each oblique unsheared triad may be associated an “extended polar decomposition” F = QG = HQ of the deformation gradient F, in which Q is a rotation tensor, and G, H are not symmetric. Both G and H have the same real eigenvalues which are the stretches of the elements of the triad. In this paper, a detailed analysis of extended polar decompositions is presented in the case when the finite deformation is that of plane strain. Then, we may deal with a 2 × 2 deformation gradient F′ = QG′ = HQ′ instead of the full 3 × 3 tensor F. In this case, the extended polar decompositions are associated with “unsheared pairs,” i.e., pairs of infinitesimal material line elements in the plane of strain which suffer no change in angle in the deformation. If one arm of an unsheared pair is chosen in the plane of strain, then, in general, its companion in the plane is determined. It follows that all possible extended polar decompositions may then be described in terms of a single parameter, the angle that the chosen arm makes with a coordinate axis in the plane. Explicit expressions for G′ and H′ are obtained, and various special cases are discussed. In particular, we note that the expressions for G′ and H′ remain valid even when the chosen arm is along a “limiting direction,” that is the direction of a line element which has no companion element in the plane forming an unsheared pair with it. The results are illustrated by considering the cases of simple shear and of pure shear.Dedicated to Professor Piero Villaggio as a symbol of our friendship and esteem.  相似文献   

12.
A systematic application of the group analysis method for modeling fluids with internal inertia is presented. The equations studied include models such as the nonlinear one-velocity model of a bubbly fluid (with incompressible liquid phase) at small volume concentration of gas bubbles (Iordanski Zhurnal Prikladnoj Mekhaniki i Tekhnitheskoj Fiziki 3, 102–111, 1960; Kogarko Dokl. AS USSR 137, 1331–1333, 1961; Wijngaarden J. Fluid Mech. 33, 465–474, 1968), and the dispersive shallow water model (Green and Naghdi J. Fluid Mech. 78, 237–246, 1976; Salmon 1988). These models are obtained for special types of the potential function W(r,[(r)\dot],S){W(\rho,\dot \rho,S)} (Gavrilyuk and Teshukov Continuum Mech. Thermodyn. 13, 365–382, 2001). The main feature of the present paper is the study of the potential functions with W S  ≠ 0. The group classification separates these models into 73 different classes.  相似文献   

13.
Conclusion General phenomenoligical stress-strain relations in non-linear theory of visco-elasticity for large deformations have been presented.In the first place, according to V. V. Novozhilov 1 we express the generalized equilibrium equation for large deformations in the Lagrange representation, and we apply the generalized Hamilton's principle to the equation of energy conservation, which denotes that the sum of the elastic energy and the dissipative energy is equal to the work done by the body force and the surface on the substance; so that we obtain the required general stress-strain relations in comparison with the above two equations.On the condition that the elastic potential is a function only of the strain, and the dissipation function is a function of the rate of strain and of strain; such a substance is reduced to the Voigt material necessarily, and the stresses which act on the substance are given by the sum of elastic- and viscous stresses, and the stress-strain relations are reduced to the so-called Lagrangian form.If elongations, shears and angles of rotation are small and also the strains and rates of strain are sufficiently small, the stress-strain relations are expressed by a linear Voigt model constituting a Hookian spring in parallel with a Newtonian dashpot.Non-linearity in the theory is classified into two groups i. e. the geometrical non-linearity and the physical non-linearity. The former is introduced into the theory through the definition of the generalized strain and of the generalized stress and through the equilibrium equation for large deformation, and the latter through the general stress-strain relations.The main result of this paper is that the general stress-strain relations in viscoelasticity are deduced necessarily from the physically appropriate assumptions.  相似文献   

14.
Variational formulations are constructed for rate-independent problems in small-deformation single-crystal strain-gradient plasticity. The framework, based on that of Gurtin (J Mech Phys Solids 50: 5–32, 2002), makes use of the flow rule expressed in terms of the dissipation function. Provision is made for energetic and dissipative microstresses. Both recoverable and non-recoverable defect energies are incorporated into the variational framework. The recoverable energies include those that depend smoothly on the slip gradients, the Burgers tensor, or on the dislocation densities (Gurtin et al. J Mech Phys Solids 55:1853–1878, 2007), as well as an energy proposed by Ohno and Okumura (J Mech Phys Solids 55:1879–1898, 2007), which leads to excellent agreement with experimental results, and which is positively homogeneous and therefore not differentiable at zero slip gradient. Furthermore, the variational formulation accommodates a non-recoverable energy due to Ohno et al. (Int J Mod Phys B 22:5937–5942, 2008), which is also positively homogeneous, and a function of the accumulated dislocation density. Conditions for the existence and uniqueness of solutions are established for the various examples of defect energy, with or without the presence of hardening or slip resistance.  相似文献   

15.
In this paper the strain-birefringence correlation technique (Lines and 1; 2; Scott, Ferroelectr Rev 1:1–129 3) is used to measure the optical birefringence quantities and the corresponding electric and mechanical quantities in a cracked PLZT-8/65/35 to study the electrical creep problem near a static crack tip. Experimental observations reveal that the domain switching emission wave (abbreviated as DSEW) is emitted from the crack tip as the time increases from 0 to 1,500 s. The measured DSEW spreads very slowly and the average speed of the wave is measured to be approximately1.25 μm/s. Although the wave has apparent anisotropic features emitted from the crack tip, the average wave speeds along three different directions from the tip show small differences. After 1,500 s experimental observations reveal that the DSEW occupies almost the whole region under consideration in the specimen. This phenomenon has not been reported in the literature. Some brief discussions are presented.  相似文献   

16.
Turbulence produced by the piston motion in spark-ignition engines is studied by 2D axisymmetric numerical simulations in the cylindrical geometry as in the theoretical and experimental work by Breuer et al. (Flow Turbul Combust 74:145, 2005). The simulations are based on the Navier–Stokes gas-dynamic equations including viscosity, thermal conduction and non-slip at the walls. Piston motion is taken into account as a boundary condition. The turbulent flow is investigated for a wide range of the engine speed, 1,000–4,000 rpm, assuming both zero and non-zero initial turbulence. The turbulent rms-velocity and the integral length scale are investigated in axial and radial directions. The rms-turbulent velocity is typically an order-of-magnitude smaller than the piston speed. In the case of zero initial turbulence, the flow at the top-dead-center may be described as a combination of two large-scale vortex rings of a size determined by the engine geometry. When initial turbulence is strong, then the integral turbulent length demonstrates self-similar properties in a large range of crank angles. The results obtained agree with the experimental observations of Breuer et al. (Flow Turbul Combust 74:145, 2005).  相似文献   

17.
An expression for the yield stress of anisotropic materials is applied to the anisotropic strength of hard rolled copper foils whose crystallographic texture is known. We assume that this crystallographic texture is the only cause of the anisotropic plastic behaviour of the material. The model used for the yield stress is also used to deduce:
  1. Stress-strain relations for isotropic polycrystalline materials;
  2. A formula for the fully plastic strain tensor, applied to anisotropic hard rolled copper foils.
For the anisotropic copper foils considered the calculated curves of the yield stress and of the strain tensor as a function of the angle x between rolling and tensile direction agree qualitatively with the measured values. However, the theory is not complete, since the yield stress and the plastic strain tensor are both a function of a parameter Q, the fraction of the number of available crystallographic slip planes on which the maximum shear stress has reached the critical value τa. We assume that for “fully” plastic deformation a certain critical fraction Q e of the total number of slip planes has to be active. The fraction Q e is called the critical active quantity. With the parameter Q e we adjust the calculated curves to the measured ones. The dependence of Q e on the properties of the material (e.g. the crystallographic texture) is discussed in Appendix I.  相似文献   

18.
A class of universal relations for isotropic elastic materials is described by the tensor equationTB = BT. This simple rule yields at most three component relations which are the generators of many known universal relations for isotropic elasticity theory, including the well-known universal rule for a simple shear. Universal relations for four families of nonhomogeneous deformations known to be controllable in every incompressible, homogeneous and isotropic elastic material are exhibited. These same universal relations may hold for special compressible materials. New universal relations for a homogeneous controllable shear, a nonhomogeneous shear, and a variable extension are derived. The general universal relation for an arbitrary isotropic tensor function of a symmetric tensor also is noted.  相似文献   

19.
We have compared direct measurements of the rate of dissipation of turbulent kinetic energy, e, to estimates using Batchelor fitting techniques in controlled laboratory experiments. Turbulence was generated uniformly throughout a linearly salt stratified fluid by the continual horizontal oscillation of a rigid vertical grid. Batchelor estimates of e were obtained by processing data acquired from traversing fast response thermistors through the fluid in three orthogonal directions. It was found that the Batchelor estimates from the two probes traversing in the plane of the grid were similar to each other, and systematically larger than those from probes traversed perpendicular to the grid plane. We show that this is related to the spatial inhomogeneity of the high wavenumber content of the temperature gradient field generated by the grid. Hence, our experiments demonstrate that care needs to be taken when using these techniques to estimate e in grid-generated turbulence with zero mean flow. Turbulent lengthscales were also measured from the same traverse data, and it was found that the estimates of this quantity from all three traverse directions were similar.  相似文献   

20.
In this paper a theory is presented in which the extra stress tensor is allowed to depend not only on the rate of strain tensor but also on the relative vorticity of the fluid, i.e. on the vorticity relative to the rate of rotation of the principal straining directions. This theory has its origin in an expansion of in terms of kinematic tensors in the limit of stationarity in a material sense (constant stretch history flows). For two dimensional flows of an incompressible fluid three tensors suffice to completely specify . The three material functions which appear can depend only on two invariants, namely the second invariant of and on . Using the predictions of an Oldroyd 8 constant fluid in a homogeneous planar flow of constant stretch history, the three material functions are studied in detail. For the special case of a quasi-Newtonian fluid shear thinning and extension thickening can directly be accounted for in the “viscosity” function. Received: September 26, 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号