首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Z. Haba 《Physica A》2011,390(15):2776-2786
We obtain a non-linear generalization of the relativistic diffusion. We discuss diffusion equations whose non-linearity is a consequence of quantum statistics. We show that the assumptions of the relativistic invariance and an interpretation of the solution as a probability distribution substantially restrict the class of admissible non-linear diffusion equations. We consider relativistic invariant as well as covariant frame-dependent diffusion equations with a drift. In the latter case we show that there can exist stationary solutions of the diffusion equation besides the equilibrium solution corresponding to the quantum or Tsallis distributions. We define the relative entropy as a function of the diffusion probability and prove that it is monotonically decreasing in time when the diffusion tends to equilibrium. We discuss its relation to the thermodynamic behavior of diffusing particles.  相似文献   

2.
The role of Poincaré covariant space-time translations is investigated in the case of the pseudoscalar-meson charge form factors. It is shown that this role extends beyond the standard energy-momentum conservation, which is accounted for in all relativistic quantum mechanics calculations. It implies constraints that have been largely ignored until now but should be fulfilled to ensure the full Poincaré covariance. The violation of these constraints, which is more or less important depending on the form of relativistic quantum mechanics that is employed, points to the validity of using a single-particle current, which is generally assumed in calculations of form factors. In short, these constraints concern the relation of the momentum transferred to the constituents to the one transferred to the system. How to account for the related constraints, as well as restoring the equivalence of different relativistic quantum mechanics approaches in estimating form factors, is discussed. Some conclusions relative to the underlying dynamics are given in the pion case.  相似文献   

3.
In quantum physical theories, interactions in a system of particles are commonly understood as perturbations to certain observables, including the Hamiltonian, of the corresponding interaction-free system. The manner in which observables undergo perturbations is subject to constraints imposed by the overall symmetries that the interacting system is expected to obey. Primary among these are the spacetime symmetries encoded by the unitary representations of the Galilei group and Poincaré group for the non-relativistic and relativistic systems, respectively. In this light, interactions can be more generally viewed as perturbations to unitary representations of connected Lie groups, including the non-compact groups of spacetime symmetry transformations. In this paper, we present a simple systematic procedure for introducing perturbations to (infinite dimensional) unitary representations of finite dimensional connected Lie groups. We discuss applications to relativistic and non-relativistic particle systems.  相似文献   

4.
We revisit the question of how a definite phase between Bose-Einstein condensates can spontaneously appear under the effect of measurements. We first consider a system that is the juxtaposition of two subsystems in Fock states with high populations, and assume that successive individual position measurements are performed. Initially, the relative phase is totally undefined, and no interference effect takes place in the first position measurement. But, while successive measurements are accumulated, the relative phase becomes better and better defined, and a clear interference pattern emerges. It turns out that all observed results can be interpreted in terms of a pre-existing, but totally unknown, relative phase, which remains exactly constant during the experiment. We then generalize the results to more condensates. We also consider other initial quantum states than pure Fock states, and distinguish between intrinsic phase of a quantum state and phase induced by measurements. Finally, we examine the case of multiple condensates of spin states. We discuss a curious quantum effect, where the measurement of the spin angular momentum of a small number of particles can induce a big angular momentum in a much larger assembly of particles, even at an arbitrary distance. This spin observable can be macroscopic, analogous to the pointer of a measurement apparatus, which illustrates the non-locality of standard quantum mechanics with particular clarity. The effect can be described as the teleportation at arbitrary distances of the continuous classical result of a local experiment. The EPR argument, transposed to this case, takes a particularly convincing form since it does not involve incompatible measurements and deals only with macroscopic variables.  相似文献   

5.
Jagannath Thakur 《Pramana》1992,39(3):253-264
We discuss the classical mechanics of relativistic systems containing any number of particles with direct interaction. We continue our previous approach of restricting the observables to gauge invariant variables. As a preliminary we show how to constructN-particle mass shell constraints. Physical momentum and position variables are constructed in consonance with nonsuperluminality and relativity and consistent with a slightly weakened separability which allows the position four vector of separated particles to differ from the canonical coordinate four vector by a constant term which depends on its history but does not affect future dynamics. The formalism is mathematically consistent though slightly more complicated than previous attempts in this direction.  相似文献   

6.
It is known that the actions of field theories on a noncommutative space-time can be written as some modified (we call them θ-modified) classical actions already on the commutative space-time (introducing a star product). Then the quantization of such modified actions reproduces both space-time noncommutativity and the usual quantum mechanical features of the corresponding field theory. In the present article, we discuss the problem of constructing θ-modified actions for relativistic QM. We construct such actions for relativistic spinless and spinning particles. The key idea is to extract θ-modified actions of the relativistic particles from path-integral representations of the corresponding noncommutative field theory propagators. We consider the Klein–Gordon and Dirac equations for the causal propagators in such theories. Then we construct for the propagators path-integral representations. Effective actions in such representations we treat as θ-modified actions of the relativistic particles. To confirm the interpretation, we canonically quantize these actions. Thus, we obtain the Klein–Gordon and Dirac equations in the noncommutative field theories. The θ-modified action of the relativistic spinning particle is just a generalization of the Berezin–Marinov pseudoclassical action for the noncommutative case.  相似文献   

7.
A new class of gravitational effects, in the quantum interference of charged particles, are studied in electron interferometry and superconducting Josephson interferometry. These include phase shifts due to the gravitationally induced Schiff-Barnhill field, rotationally induced London moment, and the modification of the Aharonov-Bohm type of phase shifts, due to the general relativistic coupling of the electromagnetic field to the gravitational field. These effects are interesting, even from a purely theoretical point of view, because they involve an elegant interplay between gravitation, electromagnetism, and quantum mechanics. But new predictions are also made which, if confirmed, would provide the first observation of relativistic gravitational effects, involving the electric charge, at the quantum mechanical level. The possibility of using these effects to detect gravitational waves is also discussed.This essay received the first award from the Gravity Research Foundation for the year 1983-Ed.  相似文献   

8.
We study how the decoherence of macroscopic objects originates intrinsically from the relativistic effect. With the degree of freedom of the center of mass(CM) characterizing the collective quantum state of a macroscopic object(MO),it is found that an MO consisting of N particles can decohere with a time scale of no more than p (N~(1/2))~-1. Here, the special relativity can induce the coupling of the collective motion mode and the relative motion modes in an order of 1/c~2, which intrinsically results in the above minimum decoherence.  相似文献   

9.
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin-Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices and mechanical flywheels and also discuss various fundamental aspects of this phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales, from elementary spinning particles, through classical light, to rotating black holes.  相似文献   

10.
The role of Poincaré covariant space-time translations is investigated in the case of a relativistic quantum mechanics approach to the pion charge form factor.It is shown that the related constraints are generally inconsistent with the assumption of a single-particle current,which is most often referred to.The only exception is the front-form approach with q + = 0.How accounting for the related constraints,as well as restoring the equivalence of different RQM approaches in estimating form factors,is discussed.Some extensions of this work and,in particular,the relationship with a dispersion-relation approach,are presented.Conclusions relative to the underlying dynamics are given.  相似文献   

11.
Relativistic Spin Operators   总被引:1,自引:0,他引:1  
A systematic theory on the appropriate spin operators for the relativistic states is developed.For a massive relativistic particle with arbitrary nonzero spin,the spin operator should be replaced with the relativistic one,which is called in this paper as moving spin.Further the concept of moving spin is discussed in the quantum field theory.A new operator,field quanta spin is defined and in terms of the generators of Poincare group the moving spin of field system is constructed.It is shown that,in virtue of the two operators,problems in quantum field concerned spin can be neatly settled.  相似文献   

12.
蒋占峰  李润东  刘伍明 《物理》2005,34(4):274-278
自旋电子学是近年来凝聚态物理研究中的一个热点.文章介绍了量子自旋流的概念,着重论述了一种新近出现的理论,其预言在一大类空穴掺杂的半导体中存在自旋流.计算了自旋流的大小,并论述了它在室温下无耗散的特性,最后给出了两种在实验中探测自旋流的方案.  相似文献   

13.
Recent experiments have renewed interest in nonlocal interpretations of quantum mechanics. The experimental observation of the violation of Bell's inequalities implies the existence of nonlocality. Bohm expressed the nonlocal connection between quantum particles through the wave function and the quantum potential. This paper shows that a similar connection exists in a relativistic dynamical theory known as parametrized relativistic quantum theory (PRQT). We present an introduction to PRQT, derive the quantum potential for a system of relativistic scalar particles, and discuss alternative interpretations of nonlocality.  相似文献   

14.
We discuss the form of the spin operator in relativistic quantum mechanics. We derive the form of the spin operator in the case when the states with negative energies are admitted. It appears that for a Dirac particle the spin operator reduces to the so called mean-spin operator introduced by Foldy and Wouthuysen. We show that the spin operator transforms under Lorentz group action according to an operator Wigner rotation, analogously as a Bloch vector describing polarization of a particle in momentum representation.  相似文献   

15.
《Physics letters. [Part B]》2006,632(5-6):733-739
Relativistic action-at-a-distance theories with interactions that propagate at the speed of light in vacuum are investigated. We consider the most general action depending on the velocities and relative positions of the particles. The Poincaré invariant parameters that label successive events along the world lines can be identified with the proper times of the particles provided that certain conditions are imposed on the interaction terms in the action. Further conditions on the interaction terms arise from the requirement that mass be a scalar. A generic class of theories with interactions that satisfy these conditions is found. The relativistic equations of motion for these theories are presented. We obtain exact circular orbits solutions of the relativistic one-body problem. The exact relativistic one-body Hamiltonian is also derived. The theory has three components: a linearly rising potential, a Coulomb-like interaction and a dynamical component to the Poincaré invariant mass. At the quantum level we obtain the generalized Klein–Gordon–Fock equation and the Dirac equation.  相似文献   

16.
In this paper, we find that topological insulators with time-reversal symmetryand inversion symmetry featuring two-dimensional quantum spin Hall (QSH) state can be divided into 16 classes, which are characterized by four Z2topological variables ζk=0,1 at four points with high symmetry in the Brillouin zone. We obtain the corresponding edge states for each one of these sixteen classes of QSHs. In addition, it is predicted that massless fermionic excitations appear at the quantum phase transition between different QSH states. In the end, we also briefly discuss the three-dimensional case.  相似文献   

17.
In a previous work it was shown that it is possible to deal with collections of indistinguishable elementary particles in a set-theoretical framework, by using hidden variables. We propose in the present paper a set-theoretical axiomatics for collections of indiscernibles with no explicit mention to hidden variables. We also show, in this context, the fundamental role of the (micro) state in the process of individuation of classical and quantum particles. Finally, we discuss the importance of the axiom of choice in Zermelo-Fraenkel set theory in the context of quantum distributions of bosons and fermions.  相似文献   

18.
相对论粒子的自旋算符   总被引:2,自引:0,他引:2  
发展了关于相对论态自旋算符的系统理论.考虑了具有非零静质量的粒子情况.对带自旋的相对论粒子,通常的自旋算符需换为相对论的自旋算符.在Poincar啨群不可约表示的框架里,构造了适用于粒子任意正则态的自旋算符,称为运动自旋.本文的讨论限于量子力学.随后将在量子场论中对此作进一步深入研究.  相似文献   

19.
A relativistic phase-space representation for a class of observables with matrix-valued Weyl symbols proportional to the identity matrix (charge-invariant observables) is proposed. We take into account the nontrivial charge structure of the position and momentum operators. The evolution equation coincides with its analog in relativistic quantum mechanics with nonlocal Hamiltonian under conditions where particle-pair creation does not take place (free particle and constant magnetic field). The differences in the equations are connected with the peculiarities of the constraints on the initial conditions. An effective increase in coherence between eigenstates of the Hamiltonian is found and possibilities of its experimental observation are discussed.  相似文献   

20.
A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis' quantum relativity. The recently proposed classical relativistic quantum theory of Prugoveki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (elementary particles). The main new aspect of this quantum mechanics is that provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that quarks should be considered as quantum relativistic particles.Supported by the Hungarian Academy of Sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号