首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Summary Thermally induced structural transformation of fibrous hydrogen-bonded molecular assemblage formed from an amphoteric pyridinecarboxylic acid of 6-[2-propyl- 4-(4-pyridylazo)phenoxy]hexanoic acid (C5PR) was studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), and thermogravimetry (TG). The organized fibrous morphology formed in an aqueous solution was stable at temperatures below 150°C. The ordered crystalline solid phase (K1) of the original fibrous material altered to a disordered crystalline solid phase (K2) at 150°C and subsequently to an isotropic phase (I) at 172°C. In the isotropic state, the C5PR molecule was slowly decomposed by decarboxylation. Once the molecular assemblage was subjected to the mesophase by heating, another ordered crystalline solid phase (K3) appeared reversibly at 17°C. The heat budget analyses by DSC indicated that a conformational entropy change such as the side-chain propyl group and the main-chain pentamethylene unit in the hydrogen-bonded molecular assemblage took place between the two ordered crystalline solid phases K1 and K3.  相似文献   

2.
孟祥茹  徐虹  潘彦  侯红卫 《结构化学》2003,22(3):359-362
采用水热法用Ni(NO3)26H2O和异烟酸制备出了一种新的由配合物形成的三维超分子体系—[Ni(C6H4O2N)2(H2O)4],并通过X射线衍射对其晶体结构进行了测定。 该晶体属三斜晶系,空间群为Pī, 所得晶胞参数为: a = 6.9228(4), b = 9.6664(19),c = 6.322(1) , a = 96.86(3), b = 113.33(3), g = 110.35(3)°, V = 347.6(1) 3, Z = 1, Mr = 374.98, Dc = 1.791 g/cm3, F(000) = 194, m = 1.443 mm-1。用1362个可观察的 (I > 2s(I))衍射点,修正123个结构参数, 最终偏离因子R = 0.0444,wR = 0.1271。在组成该化合物的基本结构单元[Ni(C6H4O2N)2(H2O)4]中,Ni处于1个稍微拉长的八面体的中心; 各个结构单元之间通过氢键OH…O相互连接,形成了无限伸展的具有层状结构的三维超分子体系。 另外,从差热及热重曲线可以看出,该化合物加热到154 ℃时开始分解, 首先失去4个H2O,再失去2个异烟酸根,最后残余物为NiO。  相似文献   

3.
4,4′‐{9,9′‐Spirobi[10H‐acridine]‐10,10′‐diyl}dibenzoic acid ( L , C29H26N2O4) was designed and synthesized as a new donor–acceptor motif molecule. Due to the large dihedral angle between the planes of the carboxyphenyl group and the spiroacridine moiety, L possess thermally activated delayed fluorescence (TADF). By applying L as a ligand and using Cd as a metal connector, we synthesized the coordination polymer catena‐poly[hemi‐μ‐aqua‐aqua(μ3‐4,4′‐{9,9′‐spirobi[10H‐acridine]‐10,10′‐diyl}dibenzoato)cadmium(II)], [Cd(C29H24N2O4)(H2O)1.5]n, ( I ). X‐ray crystallographic analysis revealed that this coordination polymer exhibits one‐dimensional chains constructed from molecular twist‐ring moieties, with Cd2O11 clusters as the connection nodes. The stacking pattern of the two‐dimensional network was formed by C—H…π interactions in the solid state. Similar to L , ( I ) presents a sky‐blue TADF emission, together with a photoluminescence quantum yield (PLQY) of 40%. It is worth noting that the photocatalytic activity toward the generation of singlet oxygen of this coordination polymer is confirmed.  相似文献   

4.
The synthesis and evaluation of the pharmacological activities of molecules containing the sulfonamide moiety have attracted interest as these compounds are important pharmacophores. The crystal structures of three closely related N‐aryl‐2,5‐dimethoxybenzenesulfonamides, namely N‐(2,3‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (I), N‐(2,4‐dichlorophenyl)‐2,5‐dimethoxybenzenesulfonamide, C14H13Cl2NO4S, (II), and N‐(2,4‐dimethylphenyl)‐2,5‐dimethoxybenzenesulfonamide, C16H19NO4S, (III), are described. The asymmetric unit of (I) consists of two symmetry‐independent molecules, while those of (II) and (III) contain one molecule each. The molecular conformations are stabilized by different intramolecular interactions, viz. C—H…O interactions in (I), N—H…Cl and C—H…O interactions in (II), and C—H…O interactions in (III). The crystals of the three compounds display different supramolecular architectures built by various weak intermolecular interactions of the types C—H…O, C—H…Cl, C—H…π(aryl), π(aryl)–π(aryl) and Cl…Cl. A detailed Hirshfeld surface analysis of these compounds has also been conducted in order to understand the relationship between the crystal structures. The d norm and shape‐index surfaces of (I)–(III) support the presence of various intermolecular interactions in the three structures. Analysis of the fingerprint plots reveals that the greatest contribution to the Hirshfeld surfaces is from H…H contacts, followed by H…O/O…H contacts. In addition, comparisons are made with the structures of some related compounds. Putative N—H…O hydrogen bonds are observed in 29 of the 30 reported structures, wherein the N—H…O hydrogen bonds form either C (4) chain motifs or R 22(8) rings. Further comparison reveals that the characteristics of the N—H…O hydrogen‐bond motifs, the presence of other interactions and the resultant supramolecular architecture is largely decided by the position of the substituents on the benzenesulfonyl ring, with the nature and position of the substituents on the aniline ring exerting little effect. On the other hand, the crystal structures of (I)–(III) display several weak interactions other than the common N—H…O hydrogen bonds, resulting in supramolecular architectures varying from one‐ to three‐dimensional depending on the nature and position of the substituents on the aniline ring.  相似文献   

5.
A new crystal-engineering motif has been developed where a ditopic receptor 1 shows a novel syn-syn hydrogen-bonded polymeric supramolecular complex (Fig. 4b) (instead of a 1:1 dimeric syn-syn or polymeric syn-anti complex) giving rise to a hydrogen-bonded stair-like polymeric ribbon structure between the binding groups of the receptor pyridine amide and the carboxyl groups of the guest substrate.  相似文献   

6.
Crystal engineering can be described as the understanding of intermolecular interactions in the context of crystal packing and the utilization of such understanding to design new solids with desired physical and chemical properties. Free‐energy differences between supramolecular isomers are generally small and minor changes in the crystallization conditions may result in the occurrence of new isomers. The study of supramolecular isomerism will help us to understand the mechanism of crystallization, a very central concept of crystal engineering. Two supramolecular isomers of dichloridobis(1,10‐phenanthroline‐κ2N,N′)cobalt(II), [CoCl2(C12H8N2)2], i.e. (IA) (orthorhombic) and (IB) (monoclinic), and two supramolecular isomers of dichloridobis(1,10‐phenanthroline‐κ2N,N′)cobalt(II) N,N‐dimethylformamide monosolvate, [CoCl2(C12H8N2)2]·C3H7NO, i.e. (IIA) (orthorhombic) and (IIB) (monoclinic), were synthesized in dimethylformamide (DMF) and structurally characterized. Of these, (IA) and (IIA) have been prepared and structurally characterized previously [Li et al. (2007). Acta Cryst. E 63 , m1880–m1880; Cai et al. (2008). Acta Cryst. E 64 , m1328–m1329]. We found that the heating rate is a key factor for the crystallization of (IA) or (IB), while the temperature difference is responsible for the crystallization of (IIA) or (IIB). Based on the crystallization conditions, isomerization behaviour, the KPI (Kitajgorodskij packing index) values and the density data, (IB) and (IIA) are assigned as the thermodynamic and stable kinetic isomers, respectively, while (IA) and (IIB) are assigned as the metastable kinetic products. The 1,10‐phenanthroline (phen) ligands interact with each other through offset face‐to‐face (OFF) π–π stacking in (IB) and (IIB), but by edge‐to‐face (EF) C—H...π interactions in (IA) and (IIA). Meanwhile, the DMF molecules in (IIB) connect to neighbouring [CoCl2(phen)2] units through two C—H...Cl hydrogen bonds, whereas there are no obvious interactions between DMF molecules and [CoCl2(phen)2] units in (IIA). Since OFF π–π stacking is generally stronger than EF C—H...π interactions for transition‐metal complexes with nitrogen‐containing aromatic ligands, (IIA) is among the uncommon examples that are stable and densely packed but that do not following Etter's intermolecular interaction hierarchy.  相似文献   

7.
Two novel inclusion compounds of 4,4′‐sulfonyldibenzoate anions and tetrapropylammonium cations with different ancillary molecules of water and boric acid, namely bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate dihydrate, 2C12H28N+·C14H8O6S2−·H2O ( 1 ), and bis(tetrapropylammonium) 4,4′‐sulfonyldibenzoate bis(boric acid), 2C12H28N+·C14H8O6S2−·2H3BO3 ( 2 ), were prepared and characterized using single‐crystal X‐ray diffraction. In the two salts, the host 4,4′‐sulfonyldibenzoic acid molecules, which are converted to the corresponding anions under basic conditions, can be regarded as proton acceptors which link different proton donors of the ancillary molecules of water or boric acid. In this way, an isolated hydrogen‐bonded tetramer is constructed in salt 1 and a ribbon is constructed in salt 2 . The tetramers and ribbons are then packed in a repeating manner to generate various host frameworks, and the tetrapropylammonium guest counter‐ions are contained in the cavities of the host lattices to give the final stable crystal structures. In these two salts, although the host anion and guest cation are the same, the difference in the ancillary small molecules results in different structures, indicating the significance of ancillary molecules in the formation of crystal structures.  相似文献   

8.
    
Recrystallization of the title Cu(II) complex from pyridine afforded solid (1:1) pyridine inclusion compound. The crystal structure revealed a pleated-sheet-like arrangement of saddle-shaped molecules of the host, with molecules of pyridine enclathrated within intermolecular cavities. Careful analysis of intermolecular contacts showed that weak aromatic edge-to-face (C–H···Fπ) interactions occur between pyridine and host molecules. The crystal packing appeared to be also stabilized by the host–host C–H···O hydrogen bonds.in final form: 22 December 2004This revised version was published online in July 2005 with a corrected issue number.  相似文献   

9.
An overview of the use of non-protein amino acids in the design of conformationally well-defined peptides, based on work from the author’s laboratory, is discussed. The crystal structures of several designed oligopeptides illustrate the useα-aminoisobutyric acid (Aib) in the construction of helices, D-amino acids in the design of helix termination segments andDPro-Xxx segments for nucleating ofβ-hairpin structures.β- andγ-amino acid residues have been used to expand the range of designed polypeptide structures. Dedicated to Professor C N R Rao on his 70th birthday  相似文献   

10.
The title compound, C12H13NO4, is one of the few examples that exhibits a syn conformation between the amide and ester carbonyl groups of the oxalyl group. This conformation allows the engagement of the amide H atom in an intramolecular three‐centred hydrogen‐bonding S(6)S(5) motif. The compound is self‐assembled by C=O...C=O and amide–π interactions into stacked columns along the b‐axis direction. The concurrence of both interactions seems to be responsible for stabilizing the observed syn conformation between the carbonyl groups. The second dimension, along the a‐axis direction, is developed by soft C—H...O hydrogen bonding. Density functional theory (DFT) calculations at the B3LYP/6‐31G(d,p) level of theory were performed to support the experimental findings.  相似文献   

11.
The title compound, [MnCl2(C24H20N6)], has been synthesized and characterized based on the multifunctional ligand 2,5‐bis(2,2′‐bipyridyl‐6‐yl)‐3,4‐diazahexa‐2,4‐diene (L). The MnII centre is five‐coordinate with an approximately square‐pyramidal geometry. The L ligand acts as a tridendate chelating ligand. The mononuclear molecules are bridged into a one‐dimensional chain by two C—H...Cl hydrogen bonds. These chains are assembled into a two‐dimensional layer through π–π stacking interactions between adjacent uncoordinated bipyridyl groups. Furthermore, a three‐dimensional supramolecular framework is attained through π–π stacking interactions between adjacent coordinated bipyridyl groups.  相似文献   

12.
A novel coordination polymer [{Cd(hmbdc)(H2O)3}·2H2O]n (hmbdc=5-hydroxy- isophthalic acid) has been synthesized and characterized by elemental analysis, IR spectra and single-crystal X-ray diffraction. The crystal belongs to monoclinic, space group P21/c, with a=9.599(3), b=18.699(5), c=7.557(2) (A), β= 108.198(4)°, V=1288.6(6) (A)3, Z=4, Mr=382.60, Dc=1.972 g/cm3, F(000)=760, μ=1.740, the final R=0.0555 and wR=0.0995 for 1732 observed reflections with Ⅰ > 2σ(Ⅰ). The structural analysis shows that the intermolecular hydrogen bonds and π-π interactions result in a three-dimensional supramolecular framework.  相似文献   

13.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

14.
The adsorption behaviour of the CdII–MOF {[Cd(L)2(ClO4)2]·H2O ( 1 ), where L is 4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole, for butan‐2‐one was investigated in a single‐crystal‐to‐single‐crystal (SCSC) fashion. A new host–guest system that encapsulated butan‐2‐one molecules, namely poly[[bis{μ3‐4‐amino‐3,5‐bis[3‐(pyridin‐4‐yl)phenyl]‐1,2,4‐triazole}cadmium(II)] bis(perchlorate) butanone sesquisolvate], {[Cd(C24H18N6)2](ClO4)2·1.5C4H8O}n, denoted C4H8O@Cd‐MOF ( 2 ), was obtained via an SCSC transformation. MOF 2 crystallizes in the tetragonal space group P43212. The specific binding sites for butan‐2‐one in the host were determined by single‐crystal X‐ray diffraction studies. N—H…O and C—H…O hydrogen‐bonding interactions and C—H…π interactions between the framework, ClO4? anions and guest molecules co‐operatively bind 1.5 butan‐2‐one molecules within the channels. The adsorption behaviour was further evidenced by 1H NMR, IR, TGA and powder X‐ray diffraction experiments, which are consistent with the single‐crystal X‐ray analysis. A 1H NMR experiment demonstrates that the supramolecular interactions between the framework, ClO4? anions and guest molecules in MOF 2 lead to a high butan‐2‐one uptake in the channel.  相似文献   

15.
The supramolecular chemistry of coordination compounds has become an important research domain of modern inorganic chemistry. Herein, six isostructural group IIB coordination compounds containing a 2‐{[(2‐methoxyphenyl)imino]methyl}phenol ligand, namely dichloridobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)zinc(II), [ZnCl2(C28H26N2O4)], 1 , diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)zinc(II), [ZnI2(C28H26N2O4)], 2 , dibromidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)cadmium(II), [CdBr2(C28H26N2O4)], 3 , diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)cadmium(II), [CdI2(C28H26N2O4)], 4 , dichloridobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)mercury(II), [HgCl2(C28H26N2O4)], 5 , and diiodidobis(2‐{(E)‐[(2‐methoxyphenyl)azaniumylidene]methyl}phenolato‐κO)mercury(II), [HgI2(C28H26N2O4)], 6 , were synthesized and characterized by X‐ray crystallography and spectroscopic techniques. All six compounds exhibit an infinite one‐dimensional ladder in the solid state governed by the formation of hydrogen‐bonding and π–π stacking interactions. The crystal structures of these compounds were studied using geometrical and Hirshfeld surface analyses. They have also been studied using M06‐2X/def2‐TZVP calculations and Bader's theory of `atoms in molecules'. The energies associated with the interactions, including the contribution of the different forces, have been evaluated. In general, the π–π stacking interactions are stronger than those reported for conventional π–π complexes, which is attributed to the influence of the metal coordination, which is stronger for Zn than either Cd or Hg. The results reported herein might be useful for understanding the solid‐state architecture of metal‐containing materials that contain MIIX2 subunits and aromatic organic ligands.  相似文献   

16.
In the title compound, C15H12N4OS2, the bond distances in the fused heterocyclic system show evidence for aromatic‐type delocalization in the pyrazole ring with some bond fixation in the triazine ring. The thiophenyl substituent is slightly disordered over two sets of atomic sites having occupancies of 0.934 (4) and 0.066 (4). The non‐H atoms in the entire molecule are nearly coplanar, with the planes of the furanyl substituent and the major orientation of the thiophenyl substituent making dihedral angles of 5.72 (17) and 1.8 (3)°, respectively, with that of the fused ring system. Molecules are linked into centrosymmetric R22(10) dimers by C—H...O hydrogen bonds and these dimers are further linked into chains by a single π–π stacking interaction. Comparisons are made with some related 4,7‐diaryl‐2‐(ethylsulfanyl)pyrazolo[1,5‐a][1,3,5]triazines which contain variously substituted aryl groups in place of the furanyl and thiophenyl substituents in the title compound.  相似文献   

17.
X-ray study of 2-cyano-(2E)-pentadien-2,4-oic acid (1) and its ethyl ester (2) showed that the molecules of1 and2 in the crystalline phase form stacks by translating along the shortest crystallographic axis. The nature of the intermolecular interactions favoring the formation of such β-structures was analyzed within the framework of the Bader topological theory. Possible routes of topochemical reactions of compounds1 and2 are considered. Dedicated to the memory of Academician M. I. Kabachnik on his 90th birthday. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1991–1995, October, 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号