首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free-radical polymerization of methyl methacrylate in the presence of chlorine-containing complexes of Fe(III) with 5,10,15,20-tetrakis(3′,5′-di-tert-butylphenyl)porphyrin and 5,10,15,20-tetrakis(3′-butoxyphenyl)porphyrin, as well as in the presence of the acetate complex of Co(III) 5,10,15,20-tetrakis(3′,5′-di-tert-butylphenyl)porphyrin, has been investigated. The kinetic features of the process and the molecular mass characteristics of polymers are studied, and a feasible polymerization mechanism is proposed.  相似文献   

2.
The catalytic activity and stability of anionic cobalt(II) porphyrin complexes: 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinatocobalt(II), 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) and the cationic cobalt(II) porphyrin: 5,10,15,20-tetrakis[4-(diethylmethylammonio)phenyl]porphyrinatocobalt(II) tertraiodide have been investigated in the oxidation of 2-mercaptoethanol by dioxygen. All complexes were efficient catalysts for the auto-oxidation of 2-mercaptoethanol. The cationic cobalt(II) porphyrin has been found to be the most reactive catalyst. The rate of auto-oxidation of 2-mercaptoethanol catalysed by 5,10,15,20-tetrakis(2,4,6-trimethyl-3,5disulfonatophenyl)porphyrinatocobalt(II) has been found to increase with increasing the pH from 7 to 9 then decreased at higher pH. The rate constants of auto-oxidation reaction showed linear dependence on catalyst concentration and saturation kinetics in both 2-mercaptoethanol concentrations and dioxygen pressure. Anionic cobalt(II) porphyrin complexes showed higher stability than the cationic catalyst in repeat oxidation reactions. Immobilizing the anionic catalysts on ion exchange resin and supporting the cationic catalyst on clay mineral montmorillonite improved their stabilities towards oxidation.  相似文献   

3.
Synthesis of Glucoside Bonded Metal Porphyrins   总被引:1,自引:0,他引:1  
Enzyme catalyzed reaction often has high selectivity and efficiency under mild conditions. However, disadvantage of enzyme catalysts is the difficulty of recovery. Metalloporphyrin plays an important role in biological system such as redox reaction, electron transfer,oxygen transportation and charge separation etc.1,2 Metalloporphyrins as superoxide dismutase (SOD) mimics have showed the ability of catalyzing the redox reaction of some harmful radicals , such as O2·―, ·OH. Grove and co-…  相似文献   

4.
Oxidative–reductive and antioxidant properties of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, and 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin in their reaction with the 2,2-diphenyl-1-picrylhydrazile free radical are studied. Two of the three abovelisted compounds, namely, 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin, were found to possess antioxidant activity, the former’s antioxidant activity being higher, while 5,10,15,20-tetrakis(4-pentoxyphenyl)porphyrin showed no antioxidant properties. A probable mechanism of antioxidant activity of the studied porphyrins involves hydrogen homolytic detachment from functional substituent in phenyl ring and the hydrogen radical interaction with 2,2-diphenyl-1-picrylhydrazile.  相似文献   

5.
2,3,7,8,12,13,17,18-Octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin has been synthesized, and its acid-base and complexing properties in the systems 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile, acetonitrile-Zn(OAc)2, and 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile-Zn(OAc)2 have been studied by spectrophotometry. Titration of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with 1,8-diazabicyclo[5.4.0]undec-7-ene is accompanied by successive deprotonation of the pyrrole nitrogen atoms with formation of the corresponding mono- and dianion. The overall acid dissociation constant of the title compound has been determined. The complexation of neutral and doubly deprotonated 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin with Zn(OAc)2 has been studied, and kinetic parameters for the formation of the zinc complex according to the molecular and ionic mechanisms have been determined. Extra coordination of 1,8-diazabicyclo[5.4.0]undec-7-ene by the zinc complex of 2,3,7,8,12,13,17,18-octaethyl-5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin.  相似文献   

6.
Crystallization and crystal structure analysis of chlorohydrates of either tri- or tetracationic copper porphyrins, namely copper(5,10,15-tris(N-methyl-pyridinium-4-yl)-20-pyridine-porphyrinato) (1) and copper(5,10,15,20-tetrakis(N-methyl-pyridinium-4-yl)-porphyrinato), respectively, have been performed. Two crystalline forms, 2 and 3, of the latter have been obtained under different preparation conditions. A novel kind of slipped stack chains of these cationic porphyrins has been detected. The pronounced saddle conformation of the porphyrin reveals pi-like interactions between the peripheral pyrrole Cb-Cb- "double bond" and the metal center. DFT calculations on the isolated porphyrins clearly show the HOMO orbitals with the correct topology to yield a bonding interaction among the stacked porphyrin units. To our knowledge, a slipped stack chain of positively charged porphyrins has never been previously reported, if the arrangement of faced units of monocationic metalloporphyrins or phthalocyanins is excluded.  相似文献   

7.
Abstract

Methoxy-isoporphyrins of zinc [5,10,15,20-tetrakis(4-sulfonatophenyl)]porphyrin, ZnTSPP (1a) and zinc [5,10,15,20-tetrakis(4-carboxyphenyl)]porphyrin, ZnTCPP (1b) have been synthesized and characterized using standard spectroscopic techniques (Uv-visible, 1H NMR) , ESI-mass spectrometry and powder X-ray diffraction studies. The isoporphyrins [5-(methoxy)-5,10,15,20-tetrakis(4-sulfonatophenyl)-5H,15H-porphinato]zinc(II) (2a) and [5-(methoxy)-5,10,15,20-tetrakis(4-carboxyphenyl)-5H,21H-porphinato]zinc(II) (2b) are formed due to nucleophilic attack of the methanol to the zinc porphyrin dication. Ceric ammonium nitrate (CAN) was used to oxidize zinc porphyrin and to form zinc porphyrin dication. The electronic spectra of the isoporphyrin complexes 2a and 2b exhibit an intense peak at near IR region . Electrochemical measurements of the synthesized isoporphyrins showed a typical irreversible reduction peak at lower potential. S-containing nucleophiles, which work as reducing agents, convert the zinc isoporphyrins to their parent porphyrins, which supports the electrochemical observations. Their structural properties have been studied using powder X-ray diffraction. The luminescence properties of isoporphyrins were compared with the parent zinc porphyrins.  相似文献   

8.
Gold(III) coordination compounds with three water-soluble porphyrins―5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TSPP4–), 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (H2TMPyP4+), and 5,10,15,20-tetrakis(4-N,N,N-trimethylaminophenyl)porphyrin (H2TTMAPP4+)―have been studied. Complex [Au(TTMAPP)]5+ has been prepared for the first time. The analysis of coordination-induced shifts of proton signals in NMR spectra and intensities of Q bands in absorption spectra indicates the high degree of bond covalence in the studied metal porphyrins and a partial transfer of electron density from porphyrin to gold ion. The cationic complexes [Au(TMPyP)]5+ and [Au(TTMAPP)]5+ in aqueous solutions has been found to exist in monomeric form, while anionic complex [Au(TSPP)]3– undergoes dimerization upon growth of concentration and solution ionic strength. Equilibrium constant for dimerization has been calculated, the constant has been found to decrease when temperature rises. Thermodynamic parameters of dimerization process have been determined: ΔH° =–31.8 kJ/mol and ΔS° =–13.8 J/mol K.  相似文献   

9.
The host-guest interactions of various tetraarylporphyrins (TP), viz., 5,10,15,20-tetraphenyl-21H,23H-porphyrin (1), 5,10,15,20-tetrakis(octadecyloxyphenyl)-21H,23H-porphyrin (2) and 5,10,15,20-tetrakis(dodecyloxyphenyl)-21H,23H-porphyrin (3) with C60 and C70 have been studied by 1H NMR, UV-vis and fluorescence spectroscopic techniques in toluene medium. All the fullerene/porphyrin complexes are found to be stable with 1:1 stoichiometry. Binding constants (K) of all the fullerene/porphyrin complexes have been determined by fluorescence quenching experiment. The trend in K values revealed that the presence of long chain n-alkyl group in tetraarylporphyrin effectively and remarkably increases the selectivity ratio of C70 over C60. Theoretical calculations have extended a good support in interpreting the stability difference between various fullerene/TP complexes.  相似文献   

10.
Russian Journal of Organic Chemistry - 5,10,15,20-Tetrakis(3,5-dibromophenyl)porphyrin and 5,10,15,20-tetrakis(3-bromo-4-methoxy-phenyl)porphyrin have been synthesized, and their complexing...  相似文献   

11.
A new water-soluble porphyrin, 5,10,15,20-tetrakis(4-piperidyl)porphyrin (T(4-Pip)P), has been synthesized. T(4-Pip)P is related to the extensively studied water-soluble porphyrin 5,10,15,20-tetrakis(4-pyridyl)porphyrin (T(4-Py)P) but has substituents with different electronic and hydrogen-bonding properties and is soluble over a much larger pH range due to the higher pKa of its conjugate acid T(4-H-Pip)P4+. Investigations of the ionic self-assembly reactions of T(4-H-Pip)P4+ with anionic water-soluble porphyrins reveal that it forms nanoscale materials.  相似文献   

12.
The metal-centered and macrocycle-centered electron-transfer oxidations and reductions of silver(II) porphyrins were characterized in nonaqueous media by electrochemistry, UV-vis spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The investigated compounds are {5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrinato}silver(II), {5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)quinoxalino[2,3-b']porphyrinato}silver(II), {5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)bisquinoxalino[2,3-b':7,8-b']porphyrinato}silver(II), and {5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)bisquinoxalino[2,3-b':12,13-b']porphyrinato}silver(II). The first one-electron oxidation and first one-electron reduction both occur at the metal center to produce stable compounds with Ag(III) or Ag(I) metal oxidation states, irrespective of the type of porphyrin ligand. The electrochemical HOMO-LUMO gap, determined by the difference in the first oxidation and first reduction potentials, decreases by introduction of quinoxaline groups fused to the Ag(II) porphyrin macrocycle. This provides a unique androgynous character to Ag(II) quinoxalinoporphyrins that enables them to act as both good electron donors and good electron acceptors, something not previously observed in other metalloporphyrin complexes. The second one-electron oxidation and second one-electron reduction of the compounds both occur at the porphyrin macrocycle to produce Ag(III) porphyrin pi-radical cations and Ag(I) porphyrin pi-radical anions, respectively. The macrocycle-centered oxidation potentials of each quinoxalinoporphyrin are shifted in a negative direction, while the macrocycle-centered reduction potentials are shifted in a positive direction as compared to the same electrode reactions of the porphyrin without the fused quinoxaline ring(s). Both potential shifts are due to a stabilization of the radical cations and radical anions by pi-extension of the porphyrin macrocycle after fusion of one or two quinoxaline moieties at the beta-pyrrolic positions of the macrocycle. Introduction of quinoxaline groups fused to the Ag(II) porphyrin macrocycle provides a unique androgynous character to Ag(II) quinoxalinoporphyrins that enables them to act as both good electron donors and good electron acceptors.  相似文献   

13.
The interaction of a cationic water-soluble porphyrin, 5,10,15,20-tetrakis[4-(3-pyridiniumpropoxy)phenyl]prophyrin tetrakisbromide (TPPOC3Py), with beta-CD and HP-beta-CD in aqueous solution has been studied by UV-vis, 1H NMR, 2D-NOESY and MALDI-TOF MS, and it reveals that a stable 1:1 inclusion complex between TPPOC3Py and HP-beta-CD or beta-CD has formed, in which one of the meso substituents of porphyrin ring has deeply penetrated through the cavity of HP-beta-CD from secondary face. The inclusion constants of the complexes of TPPOC3Py-beta-CD and TPPOC3Py-HP-beta-CD are (1.6+/-0.2)x10(3) M-1 and (8.9+/-0.4)x10(4) M-1, respectively.  相似文献   

14.
Eight 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]chlorins were synthesized by means of the Whitlock method with diimide reduction and purified by reversed-phase thin layer chromatography (RP-TLC). All compounds were characterized by (1)H NMR spectroscopy, electron-spray ionization time-of-flight mass spectrometry (ESI-TOF MS), and UV-Vis spectroscopy. ESI-TOF MS could detect the 2H difference in molecular weight between a glycoconjugated chlorin and its corresponding porphyrin (i.e., 5,10,15,20-tetrakis[3- or 4-(beta-D-glycopyranosyloxy)phenyl]porphyrin). The cellular uptake of the eight chlorins was evaluated in HeLa cells. All glycoconjugated chlorins showed higher cellular uptake than tetraphenylporphyrin tetrasulfonic acid (TPPS), and 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin showed 50-fold higher uptake than TPPS. The photocytotoxicity of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin, 5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin and TPPS towards HeLa cells was examined at the concentration of 2x10(-7) M (mol/dm(3)). These photosensitizers had no cytotoxicity in the dark, but their photocytotoxicity decreased in the order of 5,10,15,20-tetrakis[3-(beta-D-glucopyranosyloxy)phenyl]chlorin>5,10,15,20-tetrakis[3-(beta-D-xylopyranosyloxy)phenyl]chlorin>TPPS. The results indicate that the photocytotoxicity is not related simply to cellular uptake.  相似文献   

15.
The thermal stability in air of 5,10,15,20-tetrakis (4-methoxyphenyl) porphyrin (4-TMPP), 5,10,15,20-tetrakis (3-methoxyphenyl) porphyrin (3-TMPP), and their nickel metallo-complexes (4-TMPP-Ni and 3-TMPP-Ni) has been investigated by thermogravimetry (TG). 4-TMPP and 4-TMPP-Ni exhibit higher thermal stability compared to 3-TMPP and 3-TMPP-Ni. Nickel complexes exhibit a little higher thermal stability than the corresponding porphyrins. The thermal behavior including melting temperature and enthalpy of fusion was determined by differential scanning calorimetry (DSC) and infrared spectra (IR). The activation energies of thermal decompositions of 4-TMPP-Ni and 3-TMPP-Ni were obtained by integral model-free method; the mechanism functions and pre-exponential factors were determined by master plots method. The kinetic models follow the same mechanism function, Avramie-Erofeev equations with integral forms g() = [−ln (l − )]0.278 and g() = [−ln (l − )]0.260, respectively.  相似文献   

16.
The interaction between self-aggregated porphyrins such as 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and 5,10,15,20-tetrakis(4-phosphonatophenyl)porphyrin (TPPP), and a generation 5 (G5) PAMAM dendrimer template is governed by minute differences of porphyrin acido-basic properties. While at neutral pH both monomeric TPPS and TPPP form complexes with G5, decreasing pH did not lead to porphyrin ring protonation (pK(a) approximately 5) but rather to the preferential formation of H-aggregates (probably H-dimers), most likely due to protonation of the G5. Upon further acidification of the solution, this face-to-face orientation of the porphyrin units is being converted to edge-to-edge aligned J-aggregates with a tightly defined structure. This process starts by protonation of the porphyrin ring at pH below 2.3 and 2.8 for TPPS and TPPP, respectively. The AFM imaging of porphyrin/G5 nanostructures obtained at pH 0.7 shows the formation of long nanorods of TPPS with partially aggregated G5 and small aggregates of TPPP connected to individual G5 molecules.  相似文献   

17.
Gold(III) porphyrins of the type (P-R)AuPF(6), where P = 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)porphyrin and R is equal to H (1), NO(2) (2), or NH(2) (3) which is substituted at one of the eight beta-pyrrolic positions of the macrocycle, were investigated as to their electrochemistry and spectroelectrochemistry in nonaqueous media. Each compound undergoes three reductions, the first of which involves the central metal ion to give a Au(II) porphyrin or a Au(III) porphyrin pi-anion radical depending upon the nature of the porphyrin ring substituent. A similar metal-centered reduction also occurs for compounds 1, 3, and Au(III) quinoxalinoporphyrin, (PQ)AuPF(6) (4), where PQ = 5,10,15,20-tetrakis(3,5-di-tert-butylphenyl)quinoxalino[2,3-b]porphyrin, and these results on the three Au(III) porphyrins overturn the long held assumption that reductions of such complexes only occur at the macrocycle. In contrast, when a NO(2) group is introduced on the porphyrin ring to give (P-NO(2))AuPF(6) (2), the site of electron transfer is changed from the gold metal to the macrocycle to give a porphyrin pi-anion radical in the first reduction step. This change in the site of electron transfer was examined by electrochemistry combined with thin-layer UV-vis spectroelectrochemistry and ESR spectroscopy of the singly reduced compound produced by chemical reduction. The reorganization energy (lambda) of the metal-centered electron transfer reduction for (P-H)AuPF(6) (1) in benzonitrile was determined as lambda = 1.23 eV by analyzing the rates of photoinduced electron transfer from the triplet excited states of an organic electron donor to 1 in light of the Marcus theory of electron transfer. The lambda value of the metal-centered electron transfer of gold porphyrin (1) is significantly larger than lambda values of ligand-centered electron transfer reactions of metalloporphyrins.  相似文献   

18.
The boron trifluoride-catalyzed Rothemund condensations of phenylpropargylaldehyde with 4,7-dihydro-4,7-ethano-2H-isoindole or 3,4-diethylpyrrole in dichloromethane at low temperature give 5,10,15,20-tetrakis(phenylethynyl)porphyrins bearing bicyclo[2.2.2]octadiene and octaethyl substituents, respectively. The former undergoes a retro Diels-Alder reaction to afford 5,10,15,20-tetrakis(phenylethynyl)benzoporphyrin quantitatively. The different conformations of the porphyrin periphery were determined by X-ray diffraction and their redox and spectroscopic properties have been investigated.  相似文献   

19.
The reactivities of aluminum(III) complexes LAlX, where L = 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TFPP), and 2,3,7,8,12,13,17,18-octaethylporphyirn (OEP) and X = Cl or OEt, have been studied with respect to their ability to homopolymerize propylene oxide (PO) and copolymerize PO and CO(2) to yield polypropylene oxide (PPO) and polypropylene carbonate (PPC), respectively, with and without the presence of a cocatalyst, namely, 4-dimethylaminopyridine (DMAP) or a PPN(+) salt where the anion is Cl(-) or N(3)(-). In the presence of a cocatalyst (0.5 equiv), the TFPP complex is the most active in copolymerization to yield PPC, with the latter being effective even at 10 bar CO(2). An increase in the PPN(+)X(-)/[Al] ratio decreases the rate of PPC formation and favors the formation of propylene carbonate, (PC). Studies of the polymers formed in reactions involving Al-alkoxide initiators and PPN(+) salts by mass spectrometry indicate that one chain is grown per Al center. These results are compared with earlier studies where the reactions display first order kinetics in the metal complex.  相似文献   

20.
We have developed a general method to construct optically active porphyrin supramolecular assemblies by using a simple air-water interfacial assembly process. The method involved the in situ diprotonation of the free-base porphyrins at the air-water interface and subsequent assembly under compression. We showed that two intrinsically achiral water-insoluble free-base porphyrin derivatives, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine (H(2)OEP) and 5,10,15,20-tetra-p-tolyl-21H,23H-porphine (H(2)TPPMe), could be diprotonated when spread onto a 2.4 M hydrochloric acid solution surface, and the Langmuir-Schaefer (LS) films fabricated from the subphase exhibited strong circular dichroism (CD) absorption, whereas those fabricated from pure Milli-Q water subphase did not. The experimental data suggested that the helical stacking of the achiral porphyrin building blocks was responsible for the supramolecular chirality of the assemblies. Interestingly, such a method was successfully applied to a series of other intrinsically achiral free-base porphyrins such as 5,10,15,20-tetrakis(4-methoxyphenyl)-21H,23H-porphine (H(2)TPPOMe), 5,10,15,20-tetraphenyl-21H,23H-porphine (H(2)TPP), 5,10,15,20-tetrakis(4-(allyloxy)phenyl)-21H,23H-porphine (H(2)TPPOA), and 5,10,15,20-tetrakis(3,5-dimethoxyphenyl)-21H,23H-porphine (H(2)TPPDOMe). A possible mechanism has been proposed. The method provides a facile way to obtain optically active porphyrin supramolecular assemblies by using intrinsically achiral water-insoluble free-base porphyrin derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号