首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Thermodynamics on the nanoscale   总被引:1,自引:0,他引:1  
Classical thermodynamics is applied to the melting of nanometer-sized Sn particles with radii in the range 5-50 nm. Such particles display a depression of both the melting point and the latent heat of fusion depending on the particle size. The size dependence can be explained with the formation of a structurally perturbed layer at the particle surface. The experimental measurement of both melting temperatures and latent heats of fusion allowed for estimation of the thickness of the perturbed layer. This permitted in turn the evaluation of the excess Gibbs free energy associated with the perturbed layer at melting and the determination of its variation with particle size and temperature.  相似文献   

2.
Classical heterogeneous nucleation theory is used to describe the epitaxial nucleation of calcite on self-assembled monolayers (SAMs). Both spherical and faceted clusters are considered. The use of faceted clusters reveals a useful relation between the shape of very small crystals and the ratio of the heterogeneous and homogeneous nucleation barriers. The experimental approach of this paper concerns the measurement of the threshold driving forces for both homogeneous and heterogeneous nucleation of calcite. This is accomplished by preparing solutions with well-defined driving forces and by measuring the resulting types of nucleation that are observed after a fixed experimental time. The results of the experiments and the theoretical shape analysis are compared, and it is shown that in the experiments no homogeneous nucleation of calcite occurs for driving forces up to at least Deltamu/k(B)T approximately equal to 6.0. A calculation of the critical cluster size for heterogeneous nucleation results in a range of 2-28 growth units and faceted critical clusters from 3-28 growth units, depending on the value of the surface free energy of calcite. These sizes are 50-100 times smaller than the crystalline domain sizes of SAMs and therefore small enough to explain the promoting effect of the substrate.  相似文献   

3.
In this work, we used constrained lattice density functional theory to investigate how nanoscale seed particles affect heterogeneous vapor-liquid nucleation. The effects of the physical properties of nanoscale seed particles, including the seed size, the strength of seed-fluid attraction, and the shape of the seeds, on the structure of critical nuclei and nucleation barrier were systemically investigated.  相似文献   

4.
A new nucleation method to form diamond by chemically pretreating silicon (111) surfaces is reported. The nucleation consists of binding covalently 2,2-divinyladamantane molecules on the silicon substrate. Then low-pressure diamond growth was performed for 2 h via microwave plasma CVD in a tubular deposition system. The resulting diamond layers presented a good cristallinity and the Raman spectra showed a single very sharp peak at 1331 cm(-1), indicating high-quality diamonds.  相似文献   

5.
The simulation of homogeneous liquid to vapor nucleation is investigated using three rare-event algorithms, boxed molecular dynamics, hybrid umbrella sampling Monte Carlo, and forward flux sampling. Using novel implementations of these methods for efficient use in the isothermal-isobaric ensemble, the free energy barrier to nucleation and the kinetic rate are obtained for a Lennard-Jones fluid at stretched and at superheated conditions. From the free energy surface mapped as a function of two order parameters, the global density and largest bubble volume, we find that the free energy barrier height is larger when projected over bubble volume. Using a regression analysis of forward flux sampling results, we show that bubble volume is a more ideal reaction coordinate than global density to quantify the progression of the metastable liquid toward the stable vapor phase and the intervening free energy barrier. Contrary to the assumptions of theoretical approaches, we find that the bubble takes on cohesive non-spherical shapes with irregular and (sometimes highly) undulating surfaces. Overall, the resulting free energy barriers and rates agree well between the methods, providing a set of complementary algorithms useful for studies of different types of nucleation events.  相似文献   

6.
Conclusions It has been shown that the region of diamond thermodynamic stability depends on the dimensions of the carbon particles in small-particle systems. At the high supersaturation realized in vacuum condensation and chemical decomposition, there is an increase in the ratio of the probabilities for diamond and graphite nucleation.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1184–1188, June, 1979.  相似文献   

7.
Thermally annealed nanodiamond has been functionalized by C-C coupling of the partially graphitized diamond surface using aryl diazonium salts. Depending on the terminal functional groups, the modified bucky diamond nanoparticles show good solubility (up to 0.63mgmL(-1)) in different solvents. The agglomerate size of the originally strongly bound detonation diamond (>0.5μm) is substantially reduced to ~20-50nm by this chemical procedure and without using mechanical techniques such as strong ultrasound or milling. Arylation with functionalized aryl diazonium salts carrying COOH, SO(3)H, NO(2) or bromoethyl groups opens the way for further covalent grafting of organic structures. Arylation with Ar-COOH or Ar-SO(3)H leads to the formation of stable colloidal solutions in water and physiological media (i.e. PBS buffer), an important prerequisite for biomedical applications.  相似文献   

8.
One of the most intriguing problems of heterogeneous crystal nucleation in droplets is its strong enhancement in the contact mode (when the foreign particle is presumably in some kind of contact with the droplet surface) compared to the immersion mode (particle immersed in the droplet). Heterogeneous centers can have different nucleation thresholds when they act in contact or immersion modes. The underlying physical reasons for this enhancement have remained largely unclear. In this paper we present a model for the thermodynamic enhancement of heterogeneous crystal nucleation in the contact mode compared to the immersion one. To determine if and how the surface of a liquid droplet can thermodynamically stimulate its heterogeneous crystallization, we examine crystal nucleation in the immersion and contact modes by deriving and comparing with each other the reversible works of formation of crystal nuclei in these cases. The line tension of a three-phase contact gives rise to additional terms in the formation free energy of a crystal cluster and affects its Wulff (equilibrium) shape. As an illustration, the proposed model is applied to the heterogeneous nucleation of hexagonal ice crystals on generic macroscopic foreign particles in water droplets at T = 253 K. Our results show that the droplet surface does thermodynamically favor the contact mode over the immersion one. Surprisingly, the numerical evaluations suggest that the line tension contribution (from the contact of three water phases (vapor-liquid-crystal)) to this enhancement may be of the same order of magnitude as or even larger than the surface tension contribution.  相似文献   

9.
《中国化学快报》2020,31(7):2013-2018
4H-silicon carbides deposited by diamond films have wide applications in many fields such as semiconductor heterojunction, heat sink and mechanical sealing. Nucleation plays a critical role in the deposition of the diamond film on 4H-silicon carbides. Nevertheless, as a typical polar material, the fundamental mechanism of diamond nucleation on different faces of 4H-silicon carbides has not been fully understood yet. In this contribution, nucleation of diamond was performed on the carbon- and silicon-faces of 4H-silicon carbides in a direct current chemical vapor deposition device. The nucleation density on the carbon-face is higher by 2–3 orders of magnitude compared to the silicon-face. Transmission electron microscopy verifies that there are high density diamond nuclei on the interface between the carbon-face and the diamond film, which is different from columnar diamond growth structure on the silicon-face. Transition state theory calculation reveals that the unprecedented distinction of the nucleation density between the carbon-face and the silicon-face is attributed to different desorption rates of the absorbed hydrocarbon radicals. In addition, kinetic model simulations demonstrate that it is more difficult to form CH2(s)-CH2(s) dimers on silicon-faces than carbon-faces, resulting in much lower nucleation densities on silicon-faces.  相似文献   

10.
采用纳米金/碳球(Au/CS)复合物修饰硼掺杂金刚石(BDD)电极,研究了苏丹红I号在Au/CS修饰BDD电极上的电化学行为,并据此建立了实际样品中的苏丹红I号的测定方法.结果表明,与裸BDD电极相比,苏丹红I号在Au/CS修饰BDD电极上的氧化峰电流由0.24μA增加到0.83μA,峰电位由0.809V负移到0.743V.在最优测试条件下,苏丹红I号浓度与其峰电流在4~100μmol/L范围内呈线性关系,线性方程为Ip=0.011 26c+0.116(R2=0.999),检出限为8.33μmol/L.采用本方法对实际样品中的苏丹红I号进行测定,测定结果及平均回收率均优于BDD电极法.  相似文献   

11.
Current industrial practice for control of primary nucleation (nucleation from a system without pre-existing crystalline matter) during crystallization from solution involves control of supersaturation generation, impurity levels, and solvent composition. Nucleation behavior remains largely unpredictable, however, due to the presence of container surfaces, dust, dirt, and other impurities that can provide heterogeneous nucleation sites, thus making the control and scale-up of processes that depend on primary nucleation difficult. To develop a basis for the rational design of surfaces to control nucleation during crystallization from solution, we studied the role of surface chemistry and morphology of various polymeric substrates on heterogeneous nucleation using aspirin as a model compound. Nucleation induction time statistics were utilized to investigate and quantify systematically the effectiveness of polymer substrates in inducing nucleation. The nucleation induction time study revealed that poly(4-acryloylmorpholine) and poly(2-carboxyethyl acrylate), each cross-linked by divinylbenzene, significantly lowered the nucleation induction time of aspirin while the other polymers were essentially inactive. In addition, we found the presence of nanoscopic pores on certain polymer surfaces led to order-of-magnitude faster aspirin nucleation rates when compared with surfaces without pores. We studied the preferred orientation of aspirin crystals on polymer films and found the nucleation-active polymer surfaces preferentially nucleated the polar facets of aspirin, guided by hydrogen bonds. A model based on interfacial free energies was also developed which predicted the same trend of polymer surface nucleation activities as indicated by the nucleation induction times.  相似文献   

12.
In situ atomic force microscopy (AFM) is used to study the growth of cobalt nuclei on a boron doped diamond electrode under potentiostatic control. The rate of growth of the nuclei at the electrode surface is monitored using AFM as a function of time at different deposition potentials. The nucleation of cobalt nuclei is found to be "instantaneous" and the growth of the nuclei is shown to be kinetically rather than diffusionally controlled over periods of tens and hundreds of seconds. At very short times (<10 seconds) the kinetics of nucleation are apparent.  相似文献   

13.
Free energy, entropy, and the work of formation of condensation nuclei at 260 K in microcracks of β-AgI crystal structure at the initial stage of nucleation preceding crystallization are calculated by the Monte Carlo method. Unlike ideal crystal surface, nuclei in microcracks are thermodynamically stable and the barrier of free energy of nucleation is absent. Conditions of microcrack are favorable for the crystallization that qualitatively changes the regime and rate of nucleation. Stable size of nuclei at the humidity corresponding to natural atmosphere is sufficient for the filling of nanoscopic microcracks and the attainment of substrate surface. The probability of nucleus formation in microcracks by the fluctuation mechanism is incomparably higher than the probability of their formation on the defect-free surface. High crystallization ability of the particles of βAgI aerosol is ensured by multiple surface microcracks acting as active sites in combination with its complementary crystal structure. The efficiency of aerosols as stimulants of the nucleation of water vapor at negative Celsius temperatures is determined by the surface density and geometry of nanoscopic cracks and fissures on the particle surface.  相似文献   

14.
Interactions between two fluorinated diamond surfaces placed in contact with each other were investigated with quantum chemical Hartree-Fock and M?ller-Plesset perturbation theory and basis sets def-SV(P), def-TZVP, and 6-31G. Two models, C(6)H(6)F(3)-C(24)H(24)F(12) and C(13)H(16)F(6)-C(22)H(24)F(10), were used to examine how model size and level of theory affect the atomic-scale friction, especially the coefficient of friction. Also of interest was a comparison of the interaction energies of the two models with different stacking configurations. The averages of the calculated friction coefficients fell within the range of values 0.28-0.43.  相似文献   

15.
This paper analyzes the confined motion of a Brownian particle fluctuating between two conformational states with different potential profiles and different position-dependent rate constants of the transitions, the fluctuations arising from both thermal (equilibrium) and external (nonequilibrium) noise. The model illustrates a mechanism to transduce, on the nanoscale, the energy of nonequilibrium fluctuations into mechanical energy of reciprocating motion. Expressions for the reciprocating velocity and the efficiency of energy conversion are derived. These expressions are treated in more detail in the slow-fluctuation (quasi-equilibrium) regime, by simple perturbation theory arguments, and in the fast fluctuation limit, in terms of the potential of mean force. A notable observation is that the generalized driving force of the reciprocating motion is caused by two sources: the energy contribution due to the difference between the potential profiles of the states and the entropic contribution due to the difference between the position-dependent rate constants. Two illustrative examples are presented, where one of the two sources can be ignored and an exact solution is allowed. Among other aspects, we also discuss the ways to construct a molecular motor based on the reciprocating engine.  相似文献   

16.
We have developed a method of calculation of the dielectrophoretic force on a nanoparticle in a fluid environment where variations in the electric field and electric field gradients are on the same nanoscale as the particle. The Boundary Element Dielectrophoretic Force (BEDF) method involves constructing a solvent-accessible or molecular surface surrounding the particle, calculating the normal component of the electric field at the surface boundary elements, and then solving a system of linear equations for the induced surface polarization charge on each element. Different surface elements of the molecule may experience quite different polarizing electric fields, unlike the situation in the point dipole approximation. A single 100-A-radius ring test configuration is employed to facilitate comparison with the well-known point dipole approximation (PDA). We find remarkable agreement between the forces calculated by the BEDF and PDA methods for a 1 A polarizable sphere. However, for larger particles, the differences between the methods become qualitative as well as quantitative; the character of the force changes from attractive at the origin of the ring for a 50-A sphere, to repulsive for a 75-A sphere. Equally dramatic differences are found in a more complex electrical environment involving two sets of 10 rings.  相似文献   

17.
Extremely smooth (6 nm RMS roughness over 4 μm2), thin (100 nm), and continuous ultrananocrystalline diamond (UNCD) films were synthesized by microwave plasma chemical vapor deposition using a 10 nm tungsten (W) interlayer between the silicon substrate and the diamond film. These UNCD films possess a high content of sp3-bonded carbon. The W interlayer significantly increased the initial diamond nucleation density, thereby lowering the surface roughness, eliminating interfacial voids, and allowing thinner UNCD films to be grown. This structural optimization enhances the films’ properties and enables its integration with a wide variety of substrate materials.  相似文献   

18.
Parallel and series nucleation are the basic elements of the complex nucleation process when two saddle points exist on the free-energy landscape. It is pointed out that the nucleation rates follow formulas similar to those of parallel and series connection of resistors or conductors in an electric circuit. Necessary formulas to calculate individual nucleation rates at the saddle points and the total nucleation rate are summarized, and the extension to the more complex nucleation process is suggested.  相似文献   

19.
20.
A thermodynamically consistent formula is derived for the nucleation work in multicomponent homogeneous nucleation. The derivation relies on the conservative dividing surface which defines the nucleus as having specific surface energy equal to the specific surface energy sigma0 of the interface between the macroscopically large new and old phases at coexistence. Expressions are given for the radius of the nucleus defined by the conservative dividing surface and by the surface of tension. As a side result, the curvature dependence of the surface tension sigmaT of the nucleus defined by the surface of tension is also determined. The analysis is valid for nuclei of any size, i.e., for nucleation in the whole range of conditions between the binodal and the spinodal of the metastable old phase provided the inequality sigmaT < or = sigma0 is satisfied. It is found that under the conditions of validity of the analysis the nucleation rate is higher than the nucleation rate given by the classical nucleation theory. The general results are applied to nucleation of unary liquids or solids in binary gaseous, liquid or solid mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号