首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents a replica exchanging self-guided Langevin dynamics (RXSGLD) simulation method for efficient conformational searching and sampling. Unlike temperature-based replica exchanging simulations, which use high temperatures to accelerate conformational motion, this method uses self-guided Langevin dynamics (SGLD) to enhance conformational searching without the need to elevate temperatures. A RXSGLD simulation includes a series of SGLD simulations, with simulation conditions differing in the guiding effect and∕or temperature. These simulation conditions are called stages and the base stage is one with no guiding effect. Replicas of a simulation system are simulated at the stages and are exchanged according to the replica exchanging probability derived from the SGLD partition function. Because SGLD causes less perturbation on conformational distribution than high temperatures, exchanges between SGLD stages have much higher probabilities than those between different temperatures. Therefore, RXSGLD simulations have higher conformational searching ability than temperature based replica exchange simulations. Through three example systems, we demonstrate that RXSGLD can generate target canonical ensemble distribution at the base stage and achieve accelerated conformational searching. Especially for large systems, RXSGLD has remarkable advantages in terms of replica exchange efficiency, conformational searching ability, and system size extensiveness.  相似文献   

2.
3.
A hybrid Monte Carlo method with adaptive temperature choice is presented that exactly generates the distribution of a mixed-canonical ensemble composed of two canonical ensembles at low and high temperature. The analysis of resulting Markov chains with the reweighting technique shows an efficient sampling of the canonical distribution at low temperature whereas the high temperature component facilitates conformational transitions, which allows shorter simulation times. The algorithm is tested by comparing analytical and numerical results for the small n-butane molecule before simulations are performed for a triribonucleotide. Sampling the complex multiminima energy landscape of this small RNA segment, we observe enforced crossing of energy barriers. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1689–1697, 1998  相似文献   

4.
This article presents a comparative analysis of two replica‐exchange simulation methods for the structure refinement of protein loop conformations, starting from low‐resolution predictions. The methods are self‐guided Langevin dynamics (SGLD) and molecular dynamics (MD) with a Nosé–Hoover thermostat. We investigated a small dataset of 8‐ and 12‐residue loops, with the shorter loops placed initially from a coarse‐grained lattice model and the longer loops from an enumeration assembly method (the Loopy program). The CHARMM22 + CMAP force field with a generalized Born implicit solvent model (molecular‐surface parameterized GBSW2) was used to explore conformational space. We also assessed two empirical scoring methods to detect nativelike conformations from decoys: the all‐atom distance‐scaled ideal‐gas reference state (DFIRE‐AA) statistical potential and the Rosetta energy function. Among the eight‐residue loop targets, SGLD out performed MD in all cases, with a median of 0.48 Å reduction in global root‐mean‐square deviation (RMSD) of the loop backbone coordinates from the native structure. Among the more challenging 12‐residue loop targets, SGLD improved the prediction accuracy over MD by a median of 1.31 Å, representing a substantial improvement. The overall median RMSD for SGLD simulations of 12‐residue loops was 0.91 Å, yielding refinement of a median 2.70 Å from initial loop placement. Results from DFIRE‐AA and the Rosetta model applied to rescoring conformations failed to improve the overall detection calculated from the CHARMM force field. We illustrate the advantage of SGLD over the MD simulation model by presenting potential‐energy landscapes for several loop predictions. Our results demonstrate that SGLD significantly outperforms traditional MD in the generation and populating of nativelike loop conformations and that the CHARMM force field performs comparably to other empirical force fields in identifying these conformations from the resulting ensembles. Published 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

5.
6.
Using the crown ether 18-crown-6 as a test system, molecular dynamics has been evaluated as a technique for conformational searching and thermodynamic ensemble generation. By running a series of 200 ps and 2 ns simulations, an “optimum” temperature range for conformational searching, i.e., the temperature at which one finds the largest number of low energy structures, was demonstrated to be dependent on the time interval at which one examines the structure. By considering conformational degeneracy and entropy with the rigid rotor harmonic oscillator approximation we have been able to demonstrate that the ensemble generated approaches thermodynamic equilibrium in about 6 ns of simulation. To our knowledge this is the first time this has been demonstrated for a complex organic molecule and it highlights the power and usefulness of molecular dynamics as a method for thermodynamic ensemble generation and conformational searching.  相似文献   

7.
Computational grids are a promising resource for modeling complex biochemical processes such as protein folding, penetration of gases or water into proteins, or protein structural rearrangements coupled to ligand binding. We have enabled the molecular dynamics program CHARMM to run on the Open Science Grid. The implementation is general, flexible, easily modifiable for use with other molecular dynamics programs and other grids and automated in terms of job submission, monitoring, and resubmission. The usefulness of grid computing was demonstrated through the study of hydration of the Glu-66 side chain in the interior of protein staphylococcal nuclease. Multiple simulations started with and without two internal water molecules shown crystallographically to be associated with the side chain of Glu-66 yielded two distinct populations of rotameric states of Glu-66 that differed by as much as 20%. This illustrates how internal water molecules can bias protein conformations. Furthermore, there appeared to be a temporal correlation between dehydration of the side chain and conformational transitions of Glu-66. This example demonstrated how difficult it is to get convergence even in the relatively simple case of a side chain oscillating between two conformations. With grid computing, we also benchmarked the self-guided Langevin dynamics method against the Langevin dynamics method traditionally used for temperature control in molecular dynamics simulations and showed that the two methods yield comparable results.  相似文献   

8.
Grand canonical ensemble Monte Carlo simulation (GCMC) combined with the histogram reweighting technique was used to study the thermodynamic equilibrium of a homopolymer solution between a bulk and a slit pore. GCMC gives the partition coefficients that agree with those from canonical ensemble Monte Carlo simulations in a twin box, and it also gives results that are not accessible through the regular canonical ensemble simulation such as the osmotic pressure of the solution. In a bulk polymer solution, the calculated osmotic pressure agrees very well with the scaling theory predictions both for the athermal polymer solution and the theta solution. However, one cannot obtain the osmotic pressure of the confined solution in the same way since the osmotic pressure of the confined solution is anisotropic. The chemical potentials in GCMC simulations were found to differ by a translational term from the chemical potentials obtained from canonical ensemble Monte Carlo simulations with the chain insertion method. This confirms the equilibrium condition of a polymer solution partition between the bulk and a slit pore: the chemical potentials of the polymer chain including the translational term are equal at equilibrium. The histogram reweighting method enables us to obtain the partition coefficients in the whole range of concentrations based on a limited set of simulations. Those predicted bulk-pore partition coefficient data enable us to perform further theoretical analysis. Scaling predictions of the partition coefficient at different regimes were given and were confirmed by the simulation data.  相似文献   

9.
Dynamical averages based on functionals of dynamical trajectories, such as time-correlation functions, play an important role in determining kinetic or transport properties of matter. At temperatures of interest, the expectations of these quantities are often dominated by contributions from rare events, making the precise calculation of these quantities by molecular dynamics simulation difficult. Here, we present a reweighting method for combining simulations from multiple temperatures (or from simulated or parallel tempering simulations) to compute an optimal estimate of the dynamical properties at the temperature of interest without the need to invoke an approximate kinetic model (such as the Arrhenius law). Continuous and differentiable estimates of these expectations at any temperature in the sampled range can also be computed, along with an assessment of the associated statistical uncertainty. For rare events, aggregating data from multiple temperatures can produce an estimate with the desired precision at greatly reduced computational cost compared with simulations conducted at a single temperature. Here, we describe use of the method for the canonical (NVT) ensemble using four common models of dynamics (canonical distribution of Hamiltonian trajectories, Andersen thermostatting, Langevin, and overdamped Langevin or Brownian dynamics), but it can be applied to any thermodynamic ensemble provided the ratio of path probabilities at different temperatures can be computed. To illustrate the method, we compute a time-correlation function for solvated terminally-blocked alanine peptide across a range of temperatures using trajectories harvested using a modified parallel tempering protocol.  相似文献   

10.
We studied conformational stability and folding kinetics of a three-stranded beta-sheet containing two rigid turns. Static infrared measurements indicate that this beta-sheet undergoes a broad but cooperative thermal unfolding transition with a midpoint at approximately 53 degrees C. Interestingly, time-resolved infrared experiments show that its relaxation kinetics in response to a temperature-jump (T-jump) occur on the nanosecond time scale (e.g., the relaxation time is approximately 140 ns at 35.0 degrees C), thereby suggesting that the conformational relaxation encounters only a small free energy barrier or even proceeds in a downhill manner. Further Langevin dynamics simulations suggest that the observed T-jump relaxation kinetics could be modeled by a conformational diffusion process along a single-well free energy profile, which allowed us to determine the effective diffusion constant and also the roughness of the folding energy landscape.  相似文献   

11.
Quantifying the density of conformations over phase space (the conformational distribution) is needed to model important macromolecular processes such as protein folding. In this work, we quantify the conformational distribution for a simple polypeptide (N-mer polyalanine) using the cumulative distribution function (CDF), which gives the probability that two randomly selected conformations are separated by less than a "conformational" distance and whose inverse gives conformation counts as a function of conformational radius. An important finding is that the conformation counts obtained by the CDF inverse depend critically on the assignment of a conformation's distance span and the ensemble (e.g., unfolded state model): varying ensemble and conformation definition (1 --> 2 A) varies the CDF-based conformation counts for Ala(50) from 10(11) to 10(69). In particular, relatively short molecular dynamics (MD) relaxation of Ala(50)'s random-walk ensemble reduces the number of conformers from 10(55) to 10(14) (using a 1 A root-mean-square-deviation radius conformation definition) pointing to potential disconnections in comparing the results from simplified models of unfolded proteins with those from all-atom MD simulations. Explicit waters are found to roughen the landscape considerably. Under some common conformation definitions, the results herein provide (i) an upper limit to the number of accessible conformations that compose unfolded states of proteins, (ii) the optimal clustering radius/conformation radius for counting conformations for a given energy and solvent model, (iii) a means of comparing various studies, and (iv) an assessment of the applicability of random search in protein folding.  相似文献   

12.
An enhanced conformational sampling method is proposed: virtual‐system coupled canonical molecular dynamics (VcMD). Although VcMD enhances sampling along a reaction coordinate, this method is free from estimation of a canonical distribution function along the reaction coordinate. This method introduces a virtual system that does not necessarily obey a physical law. To enhance sampling the virtual system couples with a molecular system to be studied. Resultant snapshots produce a canonical ensemble. This method was applied to a system consisting of two short peptides in an explicit solvent. Conventional molecular dynamics simulation, which is ten times longer than VcMD, was performed along with adaptive umbrella sampling. Free‐energy landscapes computed from the three simulations mutually converged well. The VcMD provided quicker association/dissociation motions of peptides than the conventional molecular dynamics did. The VcMD method is applicable to various complicated systems because of its methodological simplicity. © 2018 Wiley Periodicals, Inc.  相似文献   

13.
The conformational samplings are indispensible for obtaining reliable canonical ensembles, which provide statistical averages of physical quantities such as free energies. However, the samplings of vast conformational space of biomacromolecules by conventional molecular dynamics (MD) simulations might be insufficient, due to their inadequate accessible time‐scales for investigating biological functions. Therefore, the development of methodologies for enhancing the conformational sampling of biomacromolecules still remains as a challenging issue in computational biology. To tackle this problem, we newly propose an efficient conformational search method, which is referred as TaBoo SeArch (TBSA) algorithm. In TBSA, an inverse energy histogram is used to select seeds for the conformational resampling so that states with high frequencies are inhibited, while states with low frequencies are efficiently sampled to explore the unvisited conformational space. As a demonstration, TBSA was applied to the folding of a mini‐protein, chignolin, and automatically sampled the native structure (Cα root mean square deviation < 1.0 Å) with nanosecond order computational costs started from a completely extended structure, although a long‐time 1‐µs normal MD simulation failed to sample the native structure. Furthermore, a multiscale free energy landscape method based on the conformational sampling of TBSA were quantitatively evaluated through free energy calculations with both implicit and explicit solvent models, which enable us to find several metastable states on the folding landscape. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
Although Monte Carlo and molecular dynamics are the primary methods used for free energy simulations of molecular systems, their application to molecules that have multiple conformations separated by energy barriers of ≥ 3 kcal/mol is problematic because of slow rates of convergence. In this article we introduce a hybrid simulation method termed MC-SD which mixes Monte Carlo (MC) and stochastic dynamics (SD). This new method generates a canonical ensemble via alternating MC and SD steps and combines the local exploration strengths of dynamics with the barrier-crossing ability of large-step Monte Carlo. Using calculations on double-well potentials and long simulations (108 steps of MC and 1 μs of SD) of the simple, conformationally flexible molecule n-pentane, we find that MC-SD simulations converage faster than either MC or SD alone and generate ensembles which are equivalent to those created by classical MC or SD. Using pure SD at 300 K, the conformational populations of n-pentane are shown to be poorly converged even after a full microsecond of simulation. © 1994 by John Wiley & Sons, Inc.  相似文献   

15.
The effect of torsional potential on the predictions of simulation for vapor–liquid equilibria of n-alkanes is determined. Calculations are performed with histogram-reweighting Monte Carlo simulations in the grand canonical ensemble. Decreasing the magnitude of energy barriers to dihedral rotation or allowing free rotation is found to have no effect on the predicted vapor–liquid equilibria. Restriction of the dihedral angles to a Gaussian distribution around the minimum energy conformation causes an under-prediction of the liquid densities and critical temperatures by a maximum of 7% and 2%, respectively, with discrepancies increasing monotonically with the number of dihedral angles present in a molecule. No significant deviation in vapor pressure is observed for any compound, regardless of torsional potential used. An analysis of the conformational behavior reveals that restriction of the dihedral sampling has a measurable effect on excluded volume of the molecule, and this change of conformational behavior is responsible for the reduction in the predicted saturated liquid densities observed in this work. Similar calculations for force fields employing reduced dihedral potentials or freely jointed chains show little change in the predicted excluded volume compared to the reference force field.  相似文献   

16.
In this paper, we present an analysis of argon adsorption in cylindrical pores having amorphous silica structure by means of a nonlocal density functional theory (NLDFT). In the modeling, we account for the radial and longitudinal density distributions, which allow us to consider the interface between the liquidlike and vaporlike fluids separated by a hemispherical meniscus in the canonical ensemble. The Helmholtz free energy of the meniscus was determined as a function of pore diameter. The canonical NLDFT simulations show the details of density rearrangement at the vaporlike and liquidlike spinodal points. The limits of stability of the smallest bridge and the smallest bubble were also determined with the canonical NLDFT. The energy of nucleation as a function of the bulk pressure and the pore diameter was determined with the grand canonical NLDFT using an additional external potential field. It was shown that the experimentally observed reversibility of argon adsorption isotherms at its boiling point up to the pore diameter of 4 nm is possible if the potential barrier of 22kT is overcome due to density fluctuations.  相似文献   

17.
The characteristic sampling dynamics of importance samplings driven by the Tsallis weight [C. Tsallis, J. Stat. Phys. 52, 479 (1988)] has been analyzed in terms of recently developed Langevin stochastic model by considering the effects of the density of states and the potential smoothing of the Tsallis transformation. Our study reveals that the fixed points, which are determined by the crossing points of the statistical temperature and the Tsallis effective temperature, play a critical role in overall dynamics of the Tsallis statistics sampling. The dynamical origin of enhanced conformational searches of the Tsallis weight has been investigated by unveiling the intimate relationship between the sampling dynamics and the stability change of corresponding fixed points. Based on this stochastic analysis, we propose one effective method to realize a broad energy distribution in the Tsallis statistics sampling by determining optimal Tsallis parameters systematically based on preliminary canonical samplings. The effectiveness of our method has been validated in the folding simulation of Met-Enkephalin and liquid-solid transition simulation of Lennard-Jones cluster systems.  相似文献   

18.
19.
Glycosylation regulates vital cellular processes and dramatically influences protein folding and stability. In particular, experiments have demonstrated that asparagine (N)-linked disaccharides drive a "conformational switch" in a model peptide. The present work investigates this conformational switch via extensive atomically detailed replica exchange molecular dynamics simulations in explicit solvent. To distinguish the effects of specific and nonspecific interactions upon the peptide conformational ensemble, these simulations considered model peptides that were N-linked to a disaccharide and to a steric crowder of the same shape. The simulations are remarkably consistent with experiment and provide detailed insight into the peptide structure ensemble. They suggest that steric crowding by N-linked disaccharides excludes extended conformations, but does not significantly impact the tetrahedral structure of the surrounding solvent or otherwise alter the peptide free energy surface. However, the combination of steric crowding with specific hydrogen bonds and hydrophobic stacking interactions more dramatically impacts the peptide ensemble and stabilizes new structures.  相似文献   

20.
We perform several quantum canonical ensemble simulations of (HF)(n) clusters. The HF stretches are rigid, and the stereographic projection path-integral method is employed for the simulation in the resulting curved configuration space. We make use of the reweighted random series techniques to accelerate the convergence of the path-integral simulation with respect to the number of path coefficients. We develop and test estimators for the total energy and heat capacity based on a finite difference approach for non-Euclidean spaces. The quantum effects at temperatures below 400 K are substantial for all sizes. We observe interesting thermodynamic behaviors in the quantum simulations of the octamer and the heptamer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号