首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anion photoelectron spectroscopic experiments and calculations based on density functional theory have been used to investigate and uniquely identify the structural, electronic, and magnetic properties of both neutral and anionic (Rh(m)Co(n)) and (Rh(m)Co(n))(-) (m=1-5, n=1-2) clusters, respectively. Negative ion photoelectron spectra are presented for electron binding energies up to 3.493 eV. The calculated electron affinities and vertical detachment energies are in good agreement with the measured values. Computational results for geometric structures and magnetic moments of both cluster anions and their neutrals are presented.  相似文献   

2.
(Nickel)(n)(benzene)(m) (-) cluster anions were studied by both mass spectrometry and anion photoelectron spectroscopy. Only Ni(n)(Bz)(m) (-) species for which n > or =m were observed in the mass spectra. No single-nickel Ni(1)(Bz)(m) (-) species were seen. Adiabatic electron affinities, vertical detachment energies, and second transition energies were determined for (n,m)=(2,1), (2,2), (3,1), and (3,2). For the most part, calculations on Ni(n)(Bz)(m) (-) species by B. K. Rao and P. Jena [J. Chem. Phys. 117, 5234 (2002)] were found to be consistent with our results. The synergy between their calculations and our experiment provided enhanced confidence in the theoretically implied magnetic moments of several nickel-benzene complexes. The magnetic moments of small nickel clusters were seen to be extremely sensitive to immediate molecular environmental effects.  相似文献   

3.
The electronic structures of CuBO(2)(-), Cu(BO(2))(2)(-), Cu(2)(BO(2))(-), and Cu(2)(BO(2))(2)(-) clusters were investigated using photoelectron spectroscopy. The measured vertical and adiabatic detachment energies of these clusters revealed unusual properties of Cu(BO(2))(2) cluster. With an electron affinity of 5.07 eV which is larger than that of its BO(2) superhalogen (4.46 eV) building-block, Cu(BO(2))(2) can be classified as a hyperhalogen. Density functional theory based calculations were carried out to identify the ground state geometries and study the electronic structures of these clusters. Cu(BO(2)) and Cu(BO(2))(2) clusters were found to form chainlike structures in both neutral and anionic forms. Cu(2)(BO(2)) and Cu(2)(BO(2))(2) clusters, on the other hand, preferred a chainlike structure in the anionic form but a closed ringlike structure in the neutral form. Equally important, substantial differences between adiabatic detachment energies and electron affinities were found, demonstrating that correct interpretation of the experimental photoelectron spectroscopy data requires theoretical support not only in determining the ground state geometry of neutral and anionic clusters, but also in identifying their low lying isomers.  相似文献   

4.
The molecular structures of low-lying isomers of anionic and neutral sodium auride clusters have been studied computationally at the second-order M?ller-Plesset perturbation theory level using quadruple-ζ basis sets augmented with a double set of polarization functions. The first vertical detachment energies were calculated at the M?ller-Plesset level as the energy difference between the cluster anion and the corresponding neutral cluster. The photodetachment energies of higher-lying ionization channels were calculated by adding electronic excitation energies of the neutral clusters to the first vertical detachment energy. The excitation energies were calculated at the linear response approximate coupled-cluster singles and doubles level using the anionic cluster structures. The obtained ionization energies for NaAu(-), NaAu(2)(-), NaAu(3)(-), NaAu(4)(-), Na(2)Au(2)(-), Na(2)Au(3)(-), Na(3)Au(3)(-), and Na(2)Au(4)(-) were compared to values deduced from experimental photoelectron spectra. Comparison of the calculated photoelectron spectra for a few energetically low-lying isomers shows that the energetically lowest cluster structures obtained in the calculations do not always correspond to the clusters produced experimentally. Spin-component-scaled second-order M?ller-Plesset perturbation theory calculations shift the order of the isomers such that the observed clusters more often correspond to the energetically lowest structure, whereas the spin-component-scaled approach does not improve the photodetachment energies of the sodium aurides. The potential energy surface of the sodium aurides is very soft, with several low-lying isomers requiring an accurate electron correlation treatment. The calculations show that merely the energetic criterion is not a reliable means to identify the structures of the observed sodium auride clusters; other experimental information is needed to ensure a correct assignment of the cluster structures. The cluster structures of nonstoichiometric anionic sodium aurides have been determined by comparing calculated ionization energies for low-lying structures of the anionic clusters with experimental data.  相似文献   

5.
The structures and the electronic properties of two Al-doped boron clusters, AlB(9)(-) and AlB(10)(-), were investigated via joint photoelectron spectroscopy and high-level ab initio study. The photoelectron spectra of both anions are relatively broad and have no vibrational structure. The geometrical structures were established by unbiased global minimum searches using the Coalescence Kick method and comparison between the experimental and calculated vertical electron detachment energies. The results show that both clusters have quasi-planar structures and that the Al atom is located at the periphery. Chemical bonding analysis revealed that the global minimum structures of both anions can be described as doubly (σ- and π-) aromatic systems. The nona-coordinated wheel-type structure of AlB(9)(-) was found to be a relatively high-lying isomer, while a similar structure for the neutral AlB(9) cluster was previously shown to be either a global minimum or a low-lying isomer.  相似文献   

6.
The geometric and electronic structures of both neutral and negatively charged lead sulfide clusters, (PbS)(n)/(PbS)(n)(-) (n = 2-10) were investigated in a combined anion photoelectron spectroscopy and computational study. Photoelectron spectra provided vertical detachment energies (VDEs) for the cluster anions and estimates of electron affinities (EA) for their neutral cluster counterparts, revealing a pattern of alternating EA and VDE values in which even n clusters exhibited lower EA and VDE values than odd n clusters up until n = 8. Computations found neutral lead sulfide clusters with even n to be thermodynamically more stable than their immediate (odd n) neighbors, with a consistent pattern also being found in their HOMO-LUMO gaps. Analysis of neutral cluster dissociation energies found the Pb(4)S(4) cube to be the preferred product of the queried fragmentation processes, consistent with our finding that the lead sulfide tetramer exhibits enhanced stability; it is a magic number species. Beyond n = 10, computational studies showed that neutral (PbS)(n) clusters in the size range, n = 11-15, prefer two-dimensional stacking of face-sharing lead sulfide cubical units, where lead and sulfur atoms possess a maximum of five-fold coordination. The preference for six-fold coordination, which is observed in the bulk, was not observed at these cluster sizes. Taken together, the results show a preference for the formation of slightly distorted, fused cuboids among small lead sulfide clusters.  相似文献   

7.
Ab initio electronic structure calculations have been performed for (CH(3)CN)(2) (-) and (CH(3)CN)(3) (-) cluster anions using a diffuse basis set. We found both the dipole-bound structures and internal structures, where in the former structure an excess electron is mainly distributed on the surface of the cluster while an excess electron is internally trapped in the latter configuration. The optimized structures found for cluster anions were compared to those for neutral clusters. Potential-energy surfaces were also plotted as a function of appropriate internal coordinates in order to understand the interconversions of the optimized structures of clusters. The relative stabilities of the optimized confirmers have been discussed on the basis of the characteristics of these potential surfaces, relative energies, and electron vertical detachment energies.  相似文献   

8.
We report the observation of hydrated adenine anions, A(-)(H(2)O)(n), n=1-7, and their study by anion photoelectron spectroscopy. Values for photoelectron threshold energies, E(T), and vertical detachment energies are tabulated for A(-)(H(2)O)(n) along with those for hydrated uracil anions, U(-)(H(2)O)(n), which are presented for comparison. Analysis of these and previously measured photoelectron spectra of hydrated nucleobase anions leads to the conclusion that threshold energies significantly overstate electron affinity values in these cases, and that extrapolation of hydrated nucleobase anion threshold values to n=0 leads to incorrect electron affinity values for the nucleobases themselves. Sequential shifts between spectra, however, lead to the conclusion that A(-)(H(2)O)(3) is likely to be the smallest adiabatically stable, hydrated adenine anion.  相似文献   

9.
The electron binding energies and relaxation dynamics of water cluster anions (H(2)O)(n)(-) (11 ≤ n ≤ 80) formed in co-expansions with neon were investigated using one-photon and time-resolved photoelectron imaging. Unlike previous experiments with argon, water cluster anions exhibit only one isomer class, the tightly bound isomer I with approximately the same binding energy as clusters formed in argon. This result, along with a decrease in the internal conversion lifetime of excited (H(2)O)(n)(-) (25 ≤ n ≤ 40), indicates that clusters are vibrationally warmer when formed in neon. Over the ranges studied, the vertical detachment energies and lifetimes appear to converge to previously reported values.  相似文献   

10.
Possible structures of the carbon-nitrogen clusters of the form C(m)N(n) (m = 1-4, n = 1-4, m + n = 2-5) were predicted for the neutral, anion, and cation species in the singlet, doublet, and triplet states, whenever appropriate. The calculations were performed at the G3, MP2(fc)/6-311+G*, and B3LYP/6-311+G* levels of theory. Several molecular properties related to the experimental data--such as the electronic energy, equilibrium geometry, binding energy, HOMO-LUMO gap (HLG), and spin contamination --were calculated. In addition the vertical electron attachment, the adiabatic electron affinity, and vertical ionization energy, of the neutral clusters were calculated. Most of the predicted lowest energy structures were linear, whereas bent structures became more stable with the increase of the cluster size and increase of the number of the N atoms. In most of the predicted lowest energy structures, the N atom prefers the terminal position with acetylenic bond. The calculated BE of the predicted clusters increases with the increase of the cluster size for the neutral and cation clusters but decreases with the increase of the cluster size for the anion clusters. The predicted clusters are characterized by high HLG of about 11 eV on the average, with that of the anion clusters is smaller than that for the neutral and cation clusters. It is concluded then that the anion clusters are less stable than the corresponding neutral and cation clusters. Finally, the N(2) loss reaction is treated.  相似文献   

11.
The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge transfer, and magnetic moment for DySi_n(n = 3~10) clusters and their anions were systematically investigated by using the ABCluster global search technique combined with the B3 LYP and B2 PLYP density functional methods. The results showed that the lowest energy structure of neutral DySi_n(n = 3~10) can be regarded as substituting a Si atom of the ground state structure of Si_(n+1) with a Dy atom. For anions, the extra electron effect on the structure is significant. Starting from n = 6, the lowest energy structures of DySi_n~?(n = 3~10) differ from those of neutral. The ground state is quintuplet electronic state for DySi_n(n = 3~10) excluding DySi_4 and DySi_9, which is a septet electronic state. For anions, the ground state is a sextuplet electronic state. The reliable AEA and VDE of DySi_n(n = 3~10) are reported. Analyses of HOMO-LUMO gaps indicated that doping Dy atom to silicon clusters can improve significantly their photochemical reactivity, especially for DySi_9. Analyses of NPA revealed that the 4 f electrons of Dy in DySi_4, DySi_9, and DySi_n~? with n = 4 and 6~10 participate in bonding. That is, DySi_nbelongs to the AB type. The 4 f electrons of Dy atom provide substantially the total magnetic moments for DySi_n and their anions. The dissociation energies of Ln(Ln = Pr, Sm, Eu, Gd, Ho, and Dy) fromLn Sin and their anions were evaluated to examine the relative stabilities.  相似文献   

12.
The dynamics of charge-transfer-to-solvent states are studied in I- (H2O)(n=3-10) clusters and their deuterated counterparts using time-resolved photoelectron imaging. The photoelectron spectra for clusters with n > or = 5 reveal multiple time scales for dynamics after their electronic excitation. An increase in the vertical detachment energy (VDE) by several hundred millielectronvolts on a time scale of approximately 1 ps is attributed to stabilization of the excess electron, primarily through rearrangement of the solvent molecules, but a contribution to this stabilization from motion of the I atom cannot be ruled out. The VDE drops by approximately 50 meV on a time scale of tens of picoseconds; this is attributed to loss of the neutral iodine atom. Finally, the pump-probe signal decays with a time constant of 60 ps-3 ns, increasing with cluster size. This decay is commensurate with the growth of very slow electrons and is attributed to autodetachment. Smaller clusters (n = 3, 4) display simpler dynamics. Anisotropy parameters are reported for clusters n = 4-9.  相似文献   

13.
The electronic structures and structural morphologies of naphthalene cluster anions, (naphthalene)(n)(-) (n=3-150), and its related aromatic cluster anions, (acenaphthene)(n)(-) (n=4-100) and (azulene)(n)(-) (n=1-100), are studied using anion photoelectron spectroscopy. For (naphthalene)(n) (-) clusters, two isomers coexist over a wide size range: isomers I and II-1 (28 < or = n < or =60) or isomers I and II-2 (n > or = ~60). Their contributions to the photoelectron spectra can be separated using an anion beam hole-burning technique. In contrast, such an isomer coexistence is not observed for (acenaphthene)(n) (-) and (azulene)(n) (-) clusters, where isomer I is exclusively formed throughout the whole size range. The vertical detachment energies (VDEs) of isomer I (7 < or = n < or = 100) in all the anionic clusters depend linearly on n(-13) and their size-dependent energetics are quite similar to one another. On the other hand, the VDEs of isomers II-1 and II-2 produced in (naphthalene)(n)(-) clusters with n > or = approximately 30 remain constant at 0.84 and 0.99 eV, respectively, 0.4-0.6 eV lower than those of isomer I. Based upon the ion source condition dependence and the hole-burning photoelectron spectra experiments for each isomer, the energetics and characteristics of isomers I, II-1, and II-2 are discussed: isomer I is an internalized anion state accompanied by a large change in its cluster geometry after electron attachment, while isomers II-1 and II-2 are crystal-like states with little structural relaxation. The nonappearance of isomers II-1 and II-2 for (acenaphthene)(n)(-) and (azulene)(n)(-) and a comparison with other aromatic cluster anions indicate that a highly anisotropic and symmetric pi-conjugated molecular framework, such as found in the linear oligoacenes, is an essential factor for the formation of the crystal-like ordered forms (isomers II-1 and II-2). On the other hand, lowering the molecular symmetry makes their production unfavorable.  相似文献   

14.
Anion photoelectron spectroscopy and quantum chemical calculations at the density functional theory (DFT), coupled cluster theory (CCSD(T)), and complete active space self-consistent field (CASSCF) theory levels are employed to study the reduced transition metal oxide clusters M(4)O(10)(-) (M = Cr, W) and their neutrals. Photoelectron spectra are obtained at 193 and 157 nm photon energies, revealing very different electronic structures for the Cr versus W oxide clusters. The electron affinity and HOMO-LUMO gap are measured to be 3.68 ± 0.05 and 0.7 eV, respectively, for the Cr(4)O(10) neutral cluster, as compared to 4.41 ± 0.04 and 1.3 eV for W(4)O(10). A comprehensive search is performed to determine the ground-state structures for M(4)O(10) and M(4)O(10)(-), in terms of geometry and electronic states by carefully examining the calculated relative energies at the DFT, CCSD(T), and CASSCF levels. The ground states of Cr(4)O(10) and Cr(4)O(10)(-) have tetrahedral structures similar to that of P(4)O(10) with the anion having a lower symmetry due to a Jahn-Teller distortion. The ground states of W(4)O(10) and W(4)O(10)(-) have butterfly shape structures, featuring two fused five-member rings with a metal-metal multiple bond between the central metal atoms. The much stronger WW bonding than the CrCr bonding is found to be the primary cause for the different ground state structures of the reduced Cr(4)O(10)(0/-) versus W(4)O(10)(0/-) oxide clusters. The photoelectron spectra are assigned by comparing the experimental and theoretical adiabatic and vertical electron detachment energies, further confirming the determination of the ground electronic states of M(4)O(10) and M(4)O(10)(-). The time-dependent DFT method is used to calculate the excitation energies of M(4)O(10). The TD-DFT results in combination with the self-consistently calculated vertical detachment energies for some of the excited states at the DFT and CCSD(T) levels are used to assign the higher energy bands. Accurate clustering energies and heats of formation of M(4)O(10) are calculated and used to calculate accurate reaction energies for the reduction of M(4)O(12) to M(4)O(10) by CH(3)OH, as well as for the oxidation of M(4)O(10) to M(4)O(12) by O(2). The performance of the DFT method with the B3LYP and BP86 functionals in the calculations of the relative energies, electron detachment energies, and excitation energies are evaluated, and the BP86 functional is found to give superior results for most of these energetic properties.  相似文献   

15.
Copper chloride anion clusters with both copper oxidation states can be made by laser desorption of CuCl(2) crystals. We have used this method to study the dissociation characteristics of such cluster ions. The stability and the structure of the observed complexes were probed by ab initio calculations. These calculations show that many of these complexes are bridged structures. Thus, for the Cu(2)Cl(4) dimer anion, formally [ClCu-Cl-CuCl(2)](-) , with putative mixed copper oxidation states, the two copper ions become equivalent through bridging. Such bridging does not occur when redox inactive metal ions are present as in [ClCu-Cl-CaCl(2)](-) . By observing the dissociation characteristics of a variety of metal chloride cluster anions produced from binary mixtures, the following Cl(-) affinity order is obtained: FeCl(3) > CuCl > CaCl(2) > FeCl(2) > AgCl ≈ CuCl(2) ≈ ZnCl(2) > LiCl. Ab initio calculations on the Cl(-) affinity of selected chlorides confirm this order as do Cl(-) affinity estimates from the experimentally known vertical electron detachment energies of the superhalogens CaCl(3)(-) and LiCl(2)(-) . An equimolar mixture of CuCl(2) and FeCl(3) produces an intense cluster ion, which, from (65)Cu labeling experiments, is best described as FeCl(4)(-)···Cu(+)···(-)Cl(4) Fe, a Cu(+) bound superhalogen FeCl(4)(-) dimer. The Cu(+) ion can be replaced by the redox inactive alkali cations and by Ag(+) but these metal ion bound FeCl(4)(-) dimers show an entirely different fragmentation behavior which is attributed to the absence of bridging. Electrospray ionization (ESI) of CuCl(2) produces an extended series of (CuCl(2))(n) Cl(-) anions (n = 1-11) and so in ESI very limited reduction of Cu(2+) takes place. The (CuCl(2))(n) Cl(-) anions show an abundant dissociation via loss of neutral Cu(2)Cl(4) which according to our ab initio calculations is 9 kcal/mol more stable than two CuCl(2).  相似文献   

16.
Anion photoelectron spectra of the O(2)(-) . arene and O(4)(-) . arene complexes with p-xylene and p-difluorobenzene are presented and analyzed with the aid of calculations on the anions and corresponding neutrals. Relative to the adiabatic electron affinity of O(2), the O(2)(-) . arene spectra are blueshifted by 0.75-1 eV. Solvation energy alone does not account for this shift, and it is proposed that a repulsive portion of the neutral potential energy surface is accessed in the detachment, resulting in dissociative photodetachment. O(2)(-) is found to interact more strongly with the p-difluorobenzene than the p-xylene. The binding motif involves the O(2)(-) in plane with the arene, interacting via electron donation along nearby C-H bonds. A peak found at 4.36(2) eV in the photoelectron spectrum of O(2)(-) . p-difluorobenzene (p-DFB) is tentatively attributed to the charge transfer state, O(2)(-) . p-DFB(+). Spectra of O(4)(-) . arene complexes show less blueshift in electron binding energy relative to the spectrum of bare O(4)(-), which itself undergoes dissociative photodetachment. The striking similarity between the profiles of the O(4)(-) . arene complexes with the O(4)(-) spectrum suggests that the O(4)(-) molecule remains intact upon complex formation, and delocalization of the charge across the O(4)(-) molecule results in similar structures for the anion and neutral complexes.  相似文献   

17.
A hybrid density functional approach with very large basis sets was used for studying Ca2 through Ca19 and Zn3 through Zn11 neutral clusters and their cluster anions. Energetics, structure, and vibrational analysis of all these neutral clusters and cluster anions are reported. The calculated electron affinities are in excellent agreement with experiment displaying a characteristic kink at Ca10 and Zn10. This kink occurs because the 10-atom neutral cluster is very stable whereas the cluster anion is not. Additionally, the electron detachment binding energies (BEs) up to Ca6(-) and Zn6(-) were identified by analyzing the ground and excited states of the cluster anions and of their corresponding size neutral clusters. The theoretical BE is in very good agreement with experiment for both calcium and zinc cluster anions. The three main peaks in the spectrum correspond to BEs from the ground state of the cluster anion (doublet) to the ground state of the neutral cluster (singlet) and to the first triplet and quintet excited states of the neutral cluster. The calculated energy gap from the lowest BE peak to the second peak is in excellent agreement with experiment. The calculation reproduces very well the energy gap observed in Ca4(-) and Zn4(-), which is larger than those for other sizes and is indicative of the strong stability of the anion and neutral tetramers.  相似文献   

18.
A home-made magnetic-bottle time-of-flight anion photoelectron spectrometer(PES)for the investigation of binary metal cluster geometry and electron structure is described. The photoelectron spectrometer is installed near the first space focus of home-made reflectron time of flight mass spectrometer(RTOFMS),coupled with laser ablation,pulse supersonic molecular carrier gas cluster source. The magnetic-bottle photoelectron spectrometer's resolution is about 0. 1 eV for 1 eV photoelectrons. The adiabatic electron affinity energies of neutral clusters and some features relative to their excited states can be obtained from the spectra,i. e. ,from the anion's spectra,not only the features of the anion but also the neutral clusters' features can be investigated. The detailed design,construction,and operation of the new apparatus are presented. And studied PbM-(M = Cu,Ag,Au)binary metal cluster anions,the results give clear diagram about their structures and the bond interactions. The adiabatic electron affinity energies obtained by the photoelectron spectrometer agree well with the calculated results using relativistic density functional theory(DFT)method. It show that this anion photoelectron spectrometer can be well used in studying binary metal cluster anions in the experiment condition.  相似文献   

19.
Structures and electronic properties of the mixed metal hydride anions AuAgH(-), Au(2)AgH(-), AuAg(2)H(-) and their neutrals are studied using anionic photoelectron imaging and theoretical calculations. The three isomers of AuAgH(-) are determined to be linear and those of AuAgH are determined to have C(s) symmetry. The structures of Au(2)AgH(-), AuAg(2)H(-) and their corresponding neutrals are determined to be planar with C(s) or C(2v) symmetries. The vertical detachment energies (VDEs) and adiabatic detachment energies (ADEs) of these anions are reported. Similar to the homonuclear Au(m)(-) and Ag(n)(-) clusters, the metal hydride anions with an even number of valence electrons have higher VDEs than those with an odd number. Variation of the VDEs of these metal hydride anions with interchange of Au, Ag and H (for example Au(m)Ag(n)(-)→ Au(m-1)Ag(n+ 1)(-), or Au(m-1)Ag(n)H(-)) will be shown to be characterized by the electronegativities of Au, Ag and H. The results presented in this study provide important insights into the similar and different characteristics of these three elements in small clusters.  相似文献   

20.
The effects of homogeneous and heterogeneous solvation on the electronic structure and photodetachment dynamics of hydrated carbon dioxide cluster anions are investigated using negative-ion photoelectron imaging spectroscopy. The experiments are conducted on mass-selected [(CO(2))(n)()(H(2)O)(m)()](-) cluster anions with n and m ranging up to 12 and 6, respectively, for selected clusters. Homogeneous solvation in (CO(2))(n)()(-) has minimal effect on the photoelectron angular distributions, despite dimer-to-monomer anion core switching. Heterogeneous hydration, on the other hand, is found to have the marked effect of decreasing the photodetachment anisotropy. For example, in the [CO(2)(H(2)O)(m)()](-) cluster anion series, the photoelectron anisotropy parameter falls to essentially zero with as few as 5-6 water molecules. The analysis of the data, supported by theoretical modeling, reveals that in the ground electronic state of the hydrated clusters the excess electron is localized on CO(2), corresponding to a (CO(2))(n)()(-).(H(2)O)(m)() configuration for all cluster anions studied. The diminishing anisotropy in the photoelectron images of hydrated cluster anions is proposed to be attributable to photoinduced charge transfer to solvent, creating transient (CO(2))(n)().(H(2)O)(m)()(-) states that subsequently decay via autodetachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号