首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Magnetization measurements have been made on a Fe(64)Er(19)B(17) glass, which exhibits ferrimagnetic compensation at T(comp) = 112 K, and polarized beam neutron scattering measurements have been made on Fe(78)Er(5)B(17) and Fe(64)Er(19)B(17) glasses to supplement the measurements made earlier on Fe(64)Er(19)B(17). The magnetization data were analysed with a phenomenological model, to find the magnetic moments and their components needed to interpret the neutron data. Four spin-dependent scattering cross-sections were obtained in absolute units from each neutron experiment, to determine the atomic-scale magnetic structures of the two glasses. The finite spin-flip cross-sections confirmed that these (Fe,Er)(83)B(17) glasses are non-collinear ferrimagnets. The cross-sections were calculated using a model based on random cone arrangements of the magnetic moments. The moment values and the random cone angles were refined in the calculations, which produced good agreement between the calculated curves and the experimental data. The forward limit of the spin-flip cross-sections |?σ(±?)/?Ω|(Q=0) of the Fe(64)Er(19)B(17) glass which peaked at T(comp) and the temperature variation of the total scattering amplitudes (b(?)p(∥)(Q)) suggested that the random cone angles open fully so that the collinear components p(∥)(Q) tend to zero at T(comp). The ferrimagnetic compensation is therefore characterized by an equality of the magnetic sublattices; the reversal of the magnetic structure and a compensated sperimagnetic phase which appears at T(comp).  相似文献   

2.
Neutron diffraction experiments have been carried out to study the magnetocrystalline anisotropy of two (2b and 2d) Tm sublattices and four (4f, 6g, 12j, and 12k) Fe sublattices in ferrimagnetic compound Tm2Fe17 (space group P63/mmc). We have determined the temperature dependence of the magnitude and orientation of magnetization for each of the thulium and iron sublattices in the range (10?C300) K. A spontaneous rotation (at about 90 K) of the Tm and Fe sublattice magnetizations from the c-axis to the basal plane is accompanied by a drastic change in the magnetization magnitude, signifying a large magnetization anisotropy. Both Tm sublattices exhibit an easy-axis type of the magnetocrystalline anisotropy. The Fe sublattices manifest both the uniaxial and planar anisotropy types. The sublattice formed by Fe atoms at the 4f position reveals the largest planar anisotropy constant. The Fe atoms at the 12j position show a uniaxial anisotropy. We find that the inelastic neutron scattering spectra measured below and above the spin-reorientation transition are remarkably different.  相似文献   

3.
Magnetic and Mössbauer studies have been carried out on a series of ternary borides RFe4B (R = Er, Tm, Lu) which have the hexagonal CeCo4B type structure. These compounds are found to be magnetically ordered at room temperature. Magnetization studies in the temperature range from 5 to 300 K reveal the presence of compensation temperatures in Er and Tm compounds and indicate antiferromagnetic coupling between the rare earth and Fe moments. Room temperature 57Fe Mössbauer studies yield values of hyperfine fields at the two Fe sites as 246 and 185 kOe in ErFe4B and TmFe4B, and 204 and 145 kOe in LuFe4B. The 166Er Mössbauer studies give nearly free-ion hyperfine field at the Er sites which indicates that the exchange interaction in ErFe4B is much stronger than crystal field interaction.  相似文献   

4.
The crystal structure and magnetic properties of R2Fe17-xCrx(R=Dy,Er,0≤x≤3) compounds have been investigated by me ans of X-ray diffraction and magnetization measurements. These compounds have hexagonal Th2Ni17-type structure. The unit-cell volumes decrease with the increase of Cr concentration x. The Curie temperature Tc of the Er2Fe17-xCrx compounds increases from 320 K for x=0 to 403 K for x=1.0 and then decreases with further increase of x. The Cur ie temperat ure Tc of Dy2Fe17-xCrx compounds increases from 364 K for x=0 to 435 K for x=1.0 and then decreases with further increase of x. The saturation magnetization of these compounds shows an approximately linear decrease with the increase of x. Spin reorientation transitions occur s in Er2Fe17-xCrx(x=2.0 and 3.0).  相似文献   

5.
We report and discuss experimental data on the thermoelectric power of magnetic multilayers. Measurements of the thermoelectric power of Fe/Cr, Co/Cu and Fe/Cu multilayers have been carried out in the temperature range 4K < T < 150 K magnetic fields perpendicular to the layers. All specimens were found to exhibit pronounced magnetothermoelectric power (MTEP) effects correlating with their giant negative magnetoresistance. The main difference between the MTEP and the magnetoresistance is in their temperature dependence. Whereas the magnetoresistance is a decreasing function of temperature, the MTEP, at least in Co/Cu and Fe/Cu multilayers, is very small at low temperature and increases rapidly above 30–40 K. We ascribe this high temperature part of the MTEP to spin-dependent electron-magnon scattering and we propose a theoretical model.  相似文献   

6.
Surendra Singh  Saibal Basu  M. Gupta 《Pramana》2008,71(5):1103-1107
We present unpolarized and polarized neutron reflectometry data on Fe/Au multilayer sample for characterizing the layer structure and magnetic moment density profile. Fe/Au multilayer shows strong spin-dependent scattering at interfaces, making it a prospective GMR material. Fe/Au multilayer with bilayer thickness of 130 Å was grown on Si substrate by RF magnetron sputtering technique. Unpolarized neutron reflectivity measurement yields nuclear scattering length density profile. The magnetic scattering length density profile has been obtained from polarized neutron reflectivity measurements.  相似文献   

7.

A complex temperature dependence of a.c. susceptibility of Y 2 Fe 17 under high pressures together with recent neutron diffraction studies under pressure proved the instability of the collinear ferromagnetic structure and the development of a non-collinear magnetic arrangement of Fe moments in Y 2 Fe 17 . To study the correlation between magnetic structure and volume in more detail we performed compressibility and linear thermal expansion studies under high pressures up to 100 kbar and 10 kbar, respectively. The compressibility in the paramagnetic state s P (above 10 kbar at room temperature) was determined from the Murnaghan equation of state using the X-ray data, \kappa_{P}=0.80\ {\rm Mbar}^{-1} . The linear thermal expansion and compressibility in the ferromagnetic state at low temperatures are highly anisotropic. As a consequence, the c/a ratio decreases with increasing pressure. The magnetic phase diagram of Y 2 Fe 17 compound was compiled up to 20 kbar.  相似文献   

8.
《物理学报》2009,58(11)
利用分子束外延薄膜生长技术,制备了200 (A)V/4 (A) Fe/900 V/MgO(100)薄膜样品,通过X射线反射和极化中子反射两种测量手段获得了薄膜的表面、界面及各层膜厚的相关结构信息.中子反射结果表明,Fe原子磁矩在室温下约为1.0±0.1μB,随着温度的降低,Fe原子磁矩增加,在10 K时达到1.5±0.1μB.利用指数定律拟合磁矩随温度的变化情况,外推得出4(A)铁薄膜样品的居里温度约为310±30 K.
Abstract:
Uhrathin Fe film 200 (A)V/4 (A)Fe/900 (A)V/MgO(100) has been prepared by molecular beam epitaxy (MBE). The structure parameters, such as the surface and interface roughness and the thickness of each layer, were obtained by X-ray and neutron reflectivity measurement. The magnetic properties of the thin Fe layer were investigated by polarized neutron reflectometry at different temperature. The result shows that the magnetic moment of an Fe atom is about 1.0 ± 0.1 μB at room temperature and increases to 1.5 ±0.1 μBat 10 K. The Curie temperature of the thin Fe film is estimated to be 310 ± 30 K.  相似文献   

9.
The magnetic properties and electronic structure of (K,Tl)(y)Fe(1.6)Se(2) is studied using first-principles calculations. The ground state is checkerboard antiferromagnetically coupled blocks of the minimal Fe(4) squares, with a large block-spin moment ~11.2 μ(B). The magnetic interactions could be modeled with a simple spin model involving both the inter- and intrablock, as well as the nearest-neighbor and next-nearest-neighbor couplings. The calculations also suggest a metallic ground state except for y=0.8 where a band gap ~400-550 meV opens, showing an antiferromagnetic insulator ground state for (K,Tl)(0.8)Fe(1.6)Se(2). The electronic structure of the metallic (K,Tl)(y)Fe(1.6)Se(2) is highly three dimensional with unique Fermi surface structure and topology. These features indicate that the Fe-vacancy ordering is crucial to the physical properties of (K,Tl)(y)Fe(2-x)Se(2).  相似文献   

10.
The vibrational spectrum of hydrogen and the parameters of H jump motion in the rhombohedral Th(2)Zn(17)-type compound Ce(2)Fe(17)H(5) have been studied by means of inelastic and quasielastic neutron scattering. It is found that hydrogen atoms occupying interstitial Ce(2)Fe(2) sites participate in the fast localized jump motion over the hexagons formed by these tetrahedral sites. The H jump rate τ(-1) of this localized motion is found to change from 3.9 × 10(9) s(-1) at T = 140 K to 4.9 × 10(11) s(-1) at T = 350 K, and the temperature dependence of τ(-1) in the range 140-350 K is well described by the Arrhenius law with the activation energy of 103±3 meV. Our results suggest that the hydrogen jump rate in Th(2)Zn(17)-type compounds strongly increases with decreasing nearest-neighbor distance between the tetrahedral sites within the hexagons. Since each such hexagon in Ce(2)Fe(17)H(5) is populated by two hydrogen atoms, the jump motions of H atoms on the same hexagon should be correlated.  相似文献   

11.
The low-temperature magnetic structure of NdFeAsO has been revisited using neutron powder diffraction and symmetry analysis using the Sarah representational analysis program. Four magnetic models with one magnetic variable for each of the Nd and Fe sublattices were tested. The best fit was obtained using a model with Fe moments pointing along the c-direction, and Nd moments along the a-direction. This signals a significant interplay between rare-earth and transition metal magnetism, which results in a spin-reorientation of the Fe sublattice upon ordering of the Nd moments. All models that fit the data well, including collinear models with more than one magnetic variable per sublattice, were found to have an Fe moment of 0.5 μ(B) and a Nd moment of 0.9 μ(B), demonstrating that the low-temperature Fe moment is not substantially enhanced compared to the spin-density wave state.  相似文献   

12.
The reaction cross section of 17B on 12C target at (43.7±2.4) MeV/u has been measured at the Radioactive Ion Beam Line in Lanzhou (RIBLL). The root-mean-square matter radius (Rrms) was deduced to be (2.92±0.10) fm, while the Rrms of the core and the valence neutron distribution are 2.28 fm and 5.98 fm respectively. Assuming a "core plus 2n" structure in 17B, the mixed configuration of (2s1/2) and (1d5/2) of the valence neutrons is studied and the s-wave spectroscopic factor is found to be (80±21)%.  相似文献   

13.
RE2Fe14B alloys and some of their hydrides have been studied through57Fe and161Dy Mössbauer spectroscopy (MS). For both the paramagnetic and ordered phases a consistent and physically sound analysis of the57Fe spectra is presented. Fe hyperfine fields and the local magnetic moments are obtained and compared with magnetic and structural data. A spin reorientation is observed for Er2Fe14B. A constant collinear structure down to 4.2 K was determined for the other samples. The161Dy spectra are interpreted for a pure ¦JZ=15/2 > ground multiplet in Dy2Fe14B and its hydride. The B2 crystal field parameters were estimated empirically for the Dy-alloy. Their values can account for the anisotropy in the compounds.  相似文献   

14.
We use the numerical renormalization group method to calculate the single-particle matrix elements T of the many-body T matrix of the conduction electrons scattered by a magnetic impurity at T=0 temperature. Since T determines both the total and the elastic, spin-diagonal scattering cross sections, we are able to compute the full energy, spin, and magnetic field dependence of the inelastic scattering cross section sigma(inel)(omega). We find an almost linear frequency dependence of sigma(inel)(omega) below the Kondo temperature T(K), which crosses over to a omega(2) behavior only at extremely low energies. Our method can be generalized to other quantum impurity models.  相似文献   

15.
Measurements of the total and differential cross sections dσ/dp(T)(B) and dσ/dy(B) for B(+) mesons produced in pp collisions at sqrt[s]=7 TeV are presented. The data correspond to an integrated luminosity of 5.8 pb(-1) collected by the CMS experiment operating at the LHC. The exclusive decay B(+)→J/ψK(+), with J/ψ→μ(+)μ(-), is used to detect B(+) mesons and to measure the production cross section as a function of p(T)(B) and y(B). The total cross section for p(T)(B)>5 GeV and |y(B)|<2.4 is measured to be 28.1±2.4±2.0±3.1 μb, where the first uncertainty is statistical, the second is systematic, and the last is from the luminosity measurement.  相似文献   

16.
The R2Fe14B phase has been found to exist for R=Yb. The magnetic properties presented in this paper complete the characterization of the compounds in this series for which the Stevens αJ coefficient of the R3+ ion is positive. 57Fe Mössbauer spectroscopy establishes the existence of a magnetization reorientation at 115 K of the type observed in Er and Tm compounds associated with a small Fe magnetization anisotropy. From the neutron diffraction measurements obtained at 4.2 K with and without an applied magnetic field, the easy direction of magnetization was found to be along the [100] direction, in the basal plane of the tetragonal structure. These results show that in all compounds where αJ>0 for the R3+ ion, the easy direction of magnetization in the plane is determined by the second order crystal field terms and rare earth-Fe exchange interactions and is independent of the sign of the 4th order crystal field terms.  相似文献   

17.
Atomic and electronic structures, magnetic properties of intermetallic compound NiAl with Fe additions (up to IO at .% for different types of alloying) were studied using NMR and magnetic susceptibility measurements. The effect of these parameters on the probability of occurence of phase transformation B2-LIo was explored. Experimental results were compared with those obtained by computer calculations of the electronic structure for atomic arrangement of Fe impurity in both sublattices by means of the cluster variant of TBA-LCAO method. The responsibility of the density of 3d-states at the Fermi level increasing effects (Fe−Ni substitution) and corresponding contributions, associated with orbital interactions (Fe−Al substitution), for observed behaviour of measured parameters were determined. Appearance of B2-LIo phase transition with increasing of antistructural Fe atoms (ASA) concentration was observed experimentally by means of transmission electron microscopy and X-ray diffraction analysis.  相似文献   

18.
Thermal expansion anomalies of R2Fe14B (R=Y, Nd, Gd, Tb, Er) stoichiometric compounds were studied by X-ray diffraction with high-energy synchrotron radiation using a Debye–Scherrer geometry in temperature range of ∼10–1000 K. A large invar effect with a corresponding large temperature dependence of lattice parameters ∼10–15 K above their Curie temperatures (Tc) are observed. The a-axes show a larger invar effect than the c-axes in all compounds. The spontaneous magnetostrain of the lattices and bonds are calculated. The iron sublattice is shown to dominate the volumetric spontaneous magnetostriction of the compounds and the contribution from the rare-earth sublattice is roughly proportional to the spin magnetic moment of the rare earths. The bond-length changes are consistent with the theoretical spin-density calculation. The average bonds magnetostrain around Fe sites is approximately proportional to their magnetic moments.  相似文献   

19.
A rotation-magnetic-alignment method was used to align fine-powdered (< 20 μm) Er2Fe14B at room temperature while the easy magnetization direction of Er2Fe14B lies in the basal plane. X-ray diffraction was used to check the magnetic alignment. For the first time, the temperature dependence of the anisotropy field of Er2Fe14B was measured in a wide temperature range from about 170 to 530 K. The anisotropy field was determined using the SPD technique in a pulsed-field magnetometer from 170 to 320 K (TSI = 323 K) on a magnetically aligned sample and from 330 to 530 K (TC = 550 K) on a bulk polycrystal.  相似文献   

20.
通过x射线衍射分析和磁性测量对(Nd1-xErx)3Fe273Ti17化合物的结构与磁性进行了研究.单相(Nd1-xErx)3Fe273Ti17化合物的成相范围为x=00—05之间,所有化合物均属于单斜晶系、Nd3(Fe,Ti)29型结构和A2/m空间群.着Er含量的增加,(Nd1-xErx)3Fe273Ti17化合物的晶胞体积、居里温度TC和5K下的饱和磁化强度Ms均单调减小,而5K下的饱和磁化强度Ms和Er含量的关系与稀释模型所描述的结果相一致.(Nd1-xErx)3Fe273Ti1 关键词: (Nd1-xErx)3Fe273Ti17化合物 磁晶各向异性 自旋重取向 磁相图  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号