首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report herein, facile metabolite identification workflow on the anti-depressant nefazodone, which is derived from accurate mass measurements based on a single run/experimental analysis. A hybrid LTQ/orbitrap mass spectrometer was used to obtain accurate mass full scan MS and MS/MS in a data-dependent fashion to eliminate the reliance on a parent mass list. Initial screening utilized a high mass tolerance ( approximately 10 ppm) to filter the full scan MS data for previously reported nefazodone metabolites. The tight mass tolerance reduces or eliminates background chemical noise, dramatically increasing sensitivity for confirming or eliminating the presence of metabolites as well as isobaric forms. The full scan accurate mass analysis of suspected metabolites can be confirmed or refuted using three primary tools: (1) predictive chemical formula and corresponding mass error analysis, (2) rings-plus-double bonds, and (3) accurate mass product ion spectra of parent and suspected metabolites. Accurate mass characterization of the parent ion structure provided the basis for assessing structural assignment for metabolites. Metabolites were also characterized using parent product ion m/z values to filter all tandem mass spectra for identification of precursor ions yielding similar product ions. Identified metabolite parent masses were subjected to chemical formula calculator based on accurate mass as well as bond saturation. Further analysis of potential nefazodone metabolites was executed using accurate mass product ion spectra. Reported mass measurement errors for all full scan MS and MS/MS spectra was <3 ppm, regardless of relative ion abundance, which enabled the use of predictive software in determining product ion structure. The ability to conduct biotransformation profiling via tandem mass spectrometry coupled with accurate mass measurements, all in a single experimental run, is clearly one of the most attractive features of this methodology.  相似文献   

2.
Three samples of albumin derived from human plasma (pharmaceutical grade, HSA) obtained from different commercial sources were investigated for their micro-heterogeneities by means of electrospray ionization (ESI) ion trap mass spectrometry (ITMS). The study covered MS analyses of the intact proteins as well as on the tryptic peptide level. The intact protein samples were analyzed without any separation step except for simple desalting. With these samples we observed in the positive ion ESI mass spectra that the multiply charged ion signals of HSA consisted of a number of fully or partly resolved peaks with relative intensities depending on the analyzed sample. The non-modified form of HSA was detected in the three HSA preparations at m/z values of 66448 +/- 3.6, 66450 +/- 0.6 and 66451 +/- 3.2 ([MH]+), respectively. The value calculated from the amino acid sequence was 66439. The second compound present with high intensity (in two cases the base peak in the deconvoluted mass spectrum) is interpreted as a modified HSA, and the molecular mass increase in relation to the unmodified HAS was between 116 and 118 Da (m/z of 66 564, 66 567 and 66 569), suggesting the presence of a covalently bound cysteine residue. A further peak in the deconvoluted ESI spectra was found in all three samples with rather low signal/noise ratio at m/z 66 619, 66 621 and 66 613, respectively, which may correspond to a non-enzymatic glycation described in the literature. The verification of the proposed covalent HSA modifications was subsequently done on the peptide level using high-performance liquid chromatography (HPLC)/ESI-MS and HPLC/ESI-MS/MS including low-energy collision-induced dissociation (CID). Prior to the tryptic digestion, the HSA samples were alkylated without a prior reduction step. Following this procedure we detected peptides of the sequence T21-41 that included the Cys-34 residue in both forms: cysteinylated (m/z 639.15 [M+4H]4+) as well as vinylpyridine-alkylated (m/z 635.69 [M+4H]4+, which means in its previously native free SH form). In the next step on-line LC/ESI low-energy CID MS/MS experiments were performed to verify these two proposed structures. By means of MS/MS analysis of the mentioned ions the described modification (cysteinylation) at the Cys-34 residue could be proven. This abundant modification of HSA in pharmaceutical-grade preparations could be unambiguously identified as cysteinylation at the Cys-34 residue. On the other hand, the proposed non-enzymatic glycation was not detectable on the peptide level in the on-line HPLC/ESI-MS mode, maybe due to the low concentration in the three samples under investigation.  相似文献   

3.
新型抗炎镇痛剂SFZ-47及其代谢物的电喷雾离子阱质谱研究   总被引:7,自引:0,他引:7  
用电喷雾离子阱质谱对警犬尿样中SFZ-47[3H-1,2-二氢-2-(4-甲基苯胺基)甲基-1-吡咯里嗪酮)及其4种代谢物进行了结构鉴定,利用质谱解析软件分析其裂解方式发现,它们在(+)ESI-MS^2或( )ESI-MS^3质谱中分别生成m/z122和脱吡咯里嗪酮母核的碎片,并发现葡萄苷酸型代谢物易于生成脱水(18u)和脱葡萄醛酸(176u)的碎片离子,这些特征可用于SFZ-47及结构类似物的体内生物转化研究。  相似文献   

4.
Electrospray ionization (ESI) of peptides and proteins produces a series of multiply charged ions with a mass/charge (m/z) ratio between 500 and 2000. The resulting mass spectra are crowded by these multiple charge values for each molecular mass and an isotopic cluster for each nominal m/z value. Here, we report a new algorithm simultaneously to deconvolute and deisotope ESI mass spectra from complex peptide samples based on their mass-dependent isotopic mean pattern. All signals corresponding to one peptide in the sample were reduced to one singly charged monoisotopic peak, thereby significantly reducing the number of signals, increasing the signal intensity and improving the signal-to-noise ratio. The mass list produced could be used directly for database searching. The developed algorithm also simplified interpretation of fragment ion spectra of multiply charged parent ions.  相似文献   

5.
利用N,O-双三甲基硅基三氟乙酰胺(BSTFA)和三甲基氯硅烷(TMCS)衍生化试剂对乳粉中三聚氰胺进行衍生化处理,利用离子阱气相色谱质谱联用仪,建立了全扫描、选择离子监测、二级质谱3种测定三聚氰胺的质谱方法.选择离子监测以三聚氰胺衍生物的特征离子m/z342,327,171,99为定性离子,以m/z327为定量离子;全扫描法二级质谱特征峰为定性依据,以特征离子m/z327为定量离子;二级质谱法以衍生物二级质谱m/z285,171,213为定性离子,以m/z 285为定量离子.3种方法的线性范围为0.05~2.0 mg/L,线性相关系数分别为0.9986、0.9990、0.9988;检测限分别为0.005、0.002、0.003 mg/kg,RSD分别为6.3%、5.7%、6.1%(n=6),方法的回收率为84%~105%.3种不同质谱检测方法应用到乳粉的检测中效果良好,均能够满足乳粉中三聚氰胺的检测要求.  相似文献   

6.
This study reports the application of "double isolation" in sustained off-resonance irradiation collisionally-induced dissociation tandem mass spectrometry (SORI-CID-MS/MS) to remove radio- frequency (RF) fragment ions of very close mass isobaric ions (0.02 m/z apart). Analyses were performed with a fraction of a biological extract isolated from a macroalgae containing the mycosporine-like amino acid asterina-330. Direct isolation of the precursor ion by narrowing the isolation window proved ineffective as it impinged upon the required ion thus substantially reducing its intensity. By increasing the correlated sweep time, ejection efficiency of the isolation was improved, but caused the unwanted side-effect of RF fragmentation of labile ions. Finally, by skipping the ion activation step and performing a second isolation (in the MS(3) module) the RF fragments from the first isolation were removed leaving a very pure isolation of the required precursor ion and allowed a very clean CID fragmentation. We demonstrated that the m/z 272.1351 ion is derived from the loss of NH(3) from m/z 289.1620 isobaric impurity and is not related to asterina-330. This application represents a powerful tool to remove unwanted ions in the MS/MS spectrum that result from fragmentation of isobaric ions.  相似文献   

7.
An isotopic modification of Sanger's method for identifying peptide N-termini has been developed to assist peptide sequencing by tandem mass spectrometry. Tryptic peptides, such as Val-His-Leu-Thr-Pro-Val-Glu-Lys, are derivatized with an equimolar mixture of 2,4-dinitrofluorobenzene and [2H3]2,4-dinitrofluorobenzene. Under optimized derivatization conditions, the alpha-amino group could be derivatized while the epsilon-amine of the lysine side chain and the imidazole of histidine remained underivatized. The alpha-dinitrophenyl modified peptides were characterized by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography (LC)-ESI-MS. The [M + H]+ ions showed a doublet pattern with a delta m/z of 3 and the [M + 2H]2+ ions were recognized as doublets with a delta m/z of 1.5. MS/MS was employed where both isotopic [M + 2H]2+ ions were alternately subjected to collision-induced dissociation in the second quadrupole. Fragmentation in the ionization source generated identical product ion patterns that were observed during fragmentation in the second quadrupole. In the product ion mass spectra, the N-terminal a and b ions (no c ion observed) are doublets with a delta m/z of 3 or 1.5, while the C-terminal y and z ions (no x ion observed) are singlets appearing at identical masses. Thus, the product ions containing the N-terminus derivatized with a dinitrophenyl group are unequivocally distinguished from the product ions containing the C-terminus. The dinitrophenyl modification generally enhanced the production of a and b ions without diminishing y and z ion yields.  相似文献   

8.
Off-site detection of the hydrolysed products of sulfur mustards in aqueous samples is an important task in the verification of Chemical Weapons Convention (CWC)-related chemicals. The hydrolysed products of sulfur mustards are studied under positive and negative electrospray ionisation (ESI) conditions using an additive with a view to detecting them at trace levels. In the presence of cations (Li(+), Na(+), K(+) and NH(4) (+)), the positive ion ESI mass spectra of all the compounds include the corresponding cationised species; however, only the [M+NH(4)](+) ions form [M+H](+) ions upon decomposition. The tandem mass (MS/MS) spectra of [M+H](+) ions from all the hydrolysed products of the sulfur mustard homologues were distinct and allowed these compounds to be characterised unambiguously. Similarly, the negative ion ESI mass spectra of all the compounds show prominent adducts with added anions (F(-), Cl(-), Br(-), and I(-)), but the [M-H](-) ion can only be generated by decomposition of an [M+F](-) ion. The MS/MS spectra of the [M-H](-) ions from all the compounds result in a common product ion at m/z 77. A precursor ion scan of m/z 77 is shown to be useful in the rapid screening of these compounds in aqueous samples at trace levels, even in the presence of complex masking agents, without the use of time-consuming sample preparation and chromatography steps. An MS/MS method developed to measure the detection limits of the hydrolysed products of sulfur mustards found these to be in the range of 10-500 ppb.  相似文献   

9.
A novel method for separating ions according to their charge state using a quadrupole time-of-flight mass spectrometer is presented. The benefits of charge state separation are particularly apparent in protein identification applications at low femtomole concentration levels, where in conventional TOF MS spectra peptide ions are often lost in a sea of chemical noise. When doubly and triply charged tryptic peptide ions need to be filtered from singly charged background ions, the latter are suppressed by two to three orders of magnitude, while from 10-50% of multiply charged ions remain. The suppression of chemical noise reduces the need for chromatography and can make this experimental approach the electrospray equivalent of conventional MALDI peptide maps. If unambiguous identification cannot be achieved, MS/MS experiments are performed on the precursor ions identified through charge separation, while the previously described Q2-trapping duty cycle enhancement is tuned for approximately 1.4 of the precursor m/z to enhance intensities of ions with m/z values above that of the precursor. The resulting product ion spectra contain few fragments of impurities and provide quick and unambiguous identification through database search. The multiple charge separation technique requires minimal tuning and may become a useful tool for analysis of complex mixtures.  相似文献   

10.
Electrospray ionization quadrupole time-of-flight (ESI-QqToF) mass spectra of the zwitteronic salts naloxonazine dihydrochloride 1 and naloxone hydrochloride 2, a common series of morphine opiate receptor antagonists, were recorded using different declustering potentials. The singly charged ion [M+H-2HCl](+) at m/z 651.3170 and the doubly charged ion [M+2H-2HCl](2+) at m/z 326.1700 were noted for naloxonazine dihydrochloride 1; and the singly charged ion [M+H-HCl](+) at m/z 328.1541 was observed for naloxone hydrochloride 2. Low-energy collision-induced dissociation tandem mass spectrometry (CID-MS/MS) experiments established the fragmentation routes of these compounds. In addition to the characteristic diagnostic product ions obtained, we noticed the formation of a series of radical product ions for the zwitteronic compounds 1 and 2, and also the formation of a distonic ion product formed from the singly charged ion [M+H-HCl](+) of naloxone hydrochloride 2. Confirmation of the various established fragmentation routes was effected by conducting a series of ESI-CID-QqTof-MS/MS product ion scans, which were initiated by CID in the atmospheric pressure/vacuum interface using a higher declustering potential. Deuterium labeling was also performed on the zwitteronic salts 1 and 2, in which the hydrogen atoms of the OH and NH groups were exchanged with deuterium atoms. Low-energy CID-QqTof-MS/MS product ion scans of the singly charged and doubly charged deuteriated molecules confirmed the initial fragmentation patterns proposed for the protonated molecules. Precursor ion scan analyses were also performed with a conventional quadrupole-hexapole-quadrupole tandem mass spectrometer and allowed the confirmation of the genesis of some diagnostic ions.  相似文献   

11.
The fragment ion formation characteristics of the radical anions generated from hexahydro-1,3,5-trinitrotriazine (RDX) and its three nitroso metabolites were studied using GC/MS with negative chemical ionization (NCI) to understand the fragmentation mechanisms responsible for the formation of the most abundant ions observed in their NCI mass spectra. Ab initio and density functional theory calculations were used to calculate relative free energies for different fragment ion structures suggested by the m/z values of the most abundant ions observed in the NCI mass spectra. The NCI mass spectra of the four nitramines are dominated by ions formed by the cleavage of nitrogen-nitrogen and carbon-nitrogen bonds in the atrazine ring. The most abundant anions in the NCI mass spectra of these nitramines have the general formulas C(2)H(4)N(3)O (m/z 86) and C(2)H(4)N(3)O(2) (m/z 102). The analyses of isotope-labeled standards indicate that these two ions are formed by neutral losses that include two exocylic nitrogens and one atrazine ring nitrogen. Our calculations and observations of the nitramine mass spectra suggest that the m/z 86 and m/z 102 ions are formed from either the (M--NO)(-) or (M--NO(2))(-) fragment anions by a single fragmentation reaction producing neutral losses of CH(2)N(2)O or CH(2)N(2)O(2) rather than a set of sequential reactions involving neutral losses of HNO(2) or HNO and HCN.  相似文献   

12.
A mass spectrometric study was carried out on two nonylphenoxycarboxylic acids, NP1EC and NP2EC (where 1 and 2 indicate the number of ethoxylate units attached to the nonylphenoxy moiety), that are persistent metabolites of widely used nonionic surfactant nonylphenol ethoxylates. In a gas chromatographic/mass spectrometric (GC/MS) study of the methyl esters of NP1EC and NP2EC, two series of fragment ions were observed in electron ionization (EI) mass spectra; m/z (179 + 14n, n = 0-7) and m/z (105 + 14n, n = 0-4) for NP1ECMe and m/z (223 + 14n, n = 0-7) and m/z (107 + 14n, n = 0-5) for NP2ECMe. Similarity indices were used to compare quantitatively the mass spectra of isomers. The mass spectra of two isomers were found to be similar whereas those of the remaining isomers were readily distinguishable from each other. The abundant fragment ions of the two NPECMes were investigated further by GC/MS/MS; product ions resulting from cleavage in the alkyl moiety, cleavage in the ECMe moiety and cleavage in both moieties were detected. Possible structures of the nonyl groups in the two esters were inferred. GC/chemical ionization (CI) mass spectra of the NPECMes with isobutane as reagent gas showed characteristic hydride ion-abstracted fragment ions shifted by 1 Da from those in the corresponding EI mass spectra. The sensitivity of a selected ion monitoring quantitation method for the NPECMes is enhanced under CI conditions compared with that under EI conditions. With electrospray ionization MS/MS, [M - H](-) ions of NP1EC (m/z 277) and NP2EC (m/z 321) were observed and, upon collision-induced dissociation of [M - H](-) of each of the two acids, fragment ions of m/z 219 corresponding to deprotonated nonylphenol, were observed in each case. Based on this observation, a rapid, simple and reliable selected product ion quantitation method is proposed for NP1EC and NP2EC.  相似文献   

13.
We have observed unusual mass spectra of chloramphenicol (CAP) in solutions of methanol or acetonitrile showing intense ions at m/z 297, m/z 311, m/z 325 and m/z 339. The observed ions were different from those which are traditionally observed in the full scan ESI mass spectra of CAP with ions of m/z 321, m/z 323 and m/z 325. We have evidence to show that this process starts with offline methylation of CAP in solutions of methanol or acetonitrile to give m/z 339. Investigations using nuclear magnetic resonance (NMR) spectroscopy showed that there is a methylene group somewhere within the CAP molecule but not attached to any of the carbon atoms when the CAP is dissolved in methanol or acetonitrile before infusion into the mass spectrometer. The possible locations of attachment were speculated to be the electronegative atoms apart from the chlorine atoms due to valence considerations. The methylene group is attached to the nitrogen atom and forms a bond as observed in the MS/MS spectra of m/z 297, m/z 311, m/z 325 and m/z 339 which give m/z 183 as the base peak in all cases. Further experiments showed that there is cleavage of the methylated CAP molecule followed by cluster ion formation involving addition of methylene groups to the CAP fragment with m/z 183 to produce ions of m/z including m/z 297, m/z 311, m/z 325 and m/z 339. This process occurs in the mass spectrometer in the region housing the tube lens and is triggered when the ions are accelerated through this region by application of a negative tube lens offset voltage. This region affords collision of the charged droplets with a collision gas in this case nitrogen to strip the droplets of their solvent molecules. Experiments to follow the intensities of m/z 183, m/z 311, m/z 321, m/z 323, m/z 325 and m/z 339 as the tube lens offset voltage was varied were done in which the intensities of m/z 311, m/z 325 and m/z 339 were observed to be at their peak when the tube lens offset voltage was set at -40 V. When the tube lens offset voltage is swung to +40 V, thus decelerating the ions through the capillary skimmer region via the tube lens, the traditionally observed spectra with m/z 321, m/z 323 and m/z 325 were observed.  相似文献   

14.
Benzylpyridine and papaverine, an alkyl quinoline, both produce product ions containing an azepinium ring during atmospheric pressure chemical ionisation or electrospray multistage mass spectrometry. By controlling the trapping conditions, an isolated azepinium ion was held within the trap for an extended period of time without excitation. A subsequent analytical scan revealed a mass spectrum containing ions at two mass-to-charge (m/z) ratios, the first at the m/z of the isolated product ion and the second at an m/z ratio corresponding to the adduction of a molecule of solvent. Isolation and resonance excitation of the adduct ion remove the solvent molecule, resulting in recovery of the azepinium ion at the same signal intensity as the adduct ion. Isolating and trapping the ion for a further period allowed the solvent adduct ion to be re-formed. Modulation of the solvent flowing into the source while the ion was trapped allowed variation in the solvent molecule adducted to the trapped ion. The proportion of the ion current due to the adduct ion depends on the nature of the isolated ion, the proton affinity of the solvent and the length of time for which the ion was trapped. Adduct ion formation, deliberately maximised in this study, can occur to a significant extent under standard ion trap operating conditions, reducing the ion current of product ions of interest and, ultimately, the response in tandem mass spectrometric assays.  相似文献   

15.
Vitellogenin (VTG) is a protein produced by the liver of oviparous animals in response to circulating estrogens. In the plasma of males and immature females, VTG is undetectable. VTG has been used as a biomarker for exposure to endocrine disruptors in many species. In the present study, characterization of intact Atlantic salmon VTG was effected using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI ToF MS). Tryptic digest peptides were analyzed by MALDI ToF MS to obtain a peptide mass fingerprint. De novo sequencing of the tryptic peptides used low-energy collisionally-induced dissociation (CID) in an electrospray ionization quadrupole-ToF orthogonal hybrid mass spectrometer (ESI Q-ToF MS/MS). The interpretation of the product-ion spectra obtained from the ESI Q-ToF MS/MS was done by Lutefisk, a computer-based software algorithm. The molecular mass of the intact protein was found to be 187335 Da. A total of 14 tryptic peptides were sequenced and compared with the complete rainbow trout VTG and the partial Atlantic salmon VTG sequences found in the Swiss-Prot database. De novo sequencing by CID MS/MS of 11 Atlantic salmon tryptic digest peptides with selected precursor ions at m/z 788.24, 700.20, 794.75, 834.31, 889.28, 819.79, 865.27, 843.81, 572.20, 573.66 and 561.68 showed high homology with the known sequence of rainbow trout VTG. The last two precursor peptide ions, found at m/z 573.66 and m/z 561.68, also specifically matched the known portion of the Atlantic salmon VTG sequence. Finally, three tryptic precursor peptide ions found at m/z 795.18, 893.28 and 791.05, provided product-ion spectra, which were exclusive to the unsequenced portion of the Atlantic salmon VTG.  相似文献   

16.
Lu J  Wang X  Xu Y  Dong Y  Yang S  Wu Y  Qin Y  Wu M 《The Analyst》2011,136(3):467-472
The metabolism and excretion of toremifene were investigated in one healthy male volunteer after a single oral administration of 120 mg toremifene citrate. Different liquid chromatographic/tandem mass spectrometric (LC/MS/MS) scanning techniques were carried out for the characterization of the metabolites in human urine for doping control purposes. The potential characteristic fragmentation pathways of toremifene and its major metabolites were presented. An approach for the metabolism study of toremifene and its analogs by liquid chromatography-tandem mass spectrometry was established. Five different LC/MS/MS scanning methods based on precursor ion scan (precursor ion scan of m/z 72.2, 58.2, 44.2, 45.2, 88.2 relative to five metabolic pathways) in positive ion mode were assessed to recognize the metabolites. Based on product ion scan and precursor ion scan techniques, the metabolites were proposed to be identified as 4-hydroxy-toremifene (m/z 422.4), 4'-hydroxy-toremifene (m/z 422.4), α-hydroxy-toremifene (m/z 422.4), 3,4-dihydroxy-toremifene (m/z 404.2), toremifene acid (m/z 402.2), 3-hydroxy-4-methoxy-toremifene (m/z 456.2), dihydroxy-dehydro-toremifene (m/z 440.2), 3,4-dihydroxy-toremifene (m/z 438.2), N-demethyl-4-hydroxy-toremifene (m/z 408.3), N-demethyl-3-hydroxy-4-methoxy-toremifene (m/z 438.3). In addition, a new metabolite with a protonated molecule at m/z 390.3 was detected in all urine samples. The compound was identified by LC/MS/MS as N-demethyl-4,4'-dihydroxy-tamoxifene. The results indicated that 3,4-dihydroxy-toremifene (m/z 404.2), toremifene acid (m/z 402.2) and N-demethyl-4,4'-dihydroxy-tamoxifene (m/z 390.3) were major metabolites in human urine.  相似文献   

17.
Approaching complete peroxisome characterization by gas-phase fractionation   总被引:7,自引:0,他引:7  
We examined the utility of gas-phase fractionation (GPF) in the m/z dimension to increase proteome coverage and reproducibility of peptide ion selection by direct microliquid chromatography/electrospray ionization-tandem mass spectrometry (microLC/ESI-MS/MS) analysis of the peptides produced by proteolytic digestion of unfractionated proteins from a yeast whole-cell lysate and in a peroxisomal membrane protein fraction derived from isolated yeast peroxisomes. We also investigated GPF in the relative ion intensity dimension and propose denoting the two types of GPF as GPF(m/z) and GPF(RI). Comparison of results of direct nuLC/ESI-MS/MS analysis of the unfractionated mixture of peptides from proteolysis of a yeast whole cell lysate by DD ion selection from 400-1800 m/z in triplicate and GPF(m/z) from 400-800, 800-1200 and 1200-1800 produced the following results: (i) 1.3 x more proteins were identified by GPF(m/z) for an equal amount of effort (i.e., 3 microLC/ESI-MS/MS) and (ii) proteins identified by GPF(m/z) had a lower average codon bias value. Use of GPF(RI) identified more proteins per m/z unit scanned than GPF(m/z) or triplicate analysis over a wide m/z range. After tryptic digestion of all the proteins from a discontinuous Nycodenz gradient fraction known to be enriched with yeast peroxisomal membrane proteins we detected 93% (38/41) of known peroxisomal proteins using GPF(m/z), but only 73% using a standard wide m/z range survey scan.  相似文献   

18.
In time-of-flight secondary ion mass spectrometry (ToF-SIMS), the choice of primary ion used for analysis can influence the resulting mass spectrum. This is because different primary ion types can produce different fragmentation pathways. In this study, analysis of single-component protein monolayers were performed using monatomic, tri-atomic, and polyatomic primary ion sources. Eight primary ions (Cs(+), Au(+), Au(3) (+), Bi(+), Bi(3) (+), Bi(3) (++), C(60) (+)) were used to examine to the low mass (m/z < 200) fragmentation patterns from five different proteins (bovine serum albumin, bovine serum fibrinogen, bovine immunoglobulin G and chicken egg white lysozyme) adsorbed onto mica surfaces. Principal component analysis (PCA) processing of the ToF-SIMS data showed that variation in peak intensity caused by the primary ions was greater than differences in protein composition. The spectra generated by Cs(+), Au(+) and Bi(+) primary ions were similar, but the spectra generated by monatomic, tri-atomic and polyatomic primary ion ions varied significantly. C(60) primary ions increased fragmentation of the adsorbed proteins in the m/z < 200 region, resulting in more intense low m/z peaks. Thus, comparison of data obtained by one primary ion species with that obtained by another primary ion species should be done with caution. However, for the spectra generated using a given primary ion beam, discrimination between the spectra of different proteins followed similar trends. Therefore, a PCA model of proteins created with a given ion source should only be applied to datasets obtained using the same ion source. The type of information obtained from PCA depended on the peak set used. When only amino acid peaks were used, PCA was able to identify the relationship between proteins by their amino acid composition. When all peaks from m/z 12-200 were used, PCA separated proteins based on a ratio of C(4)H(8)N(+) to K(+) peak intensities. This ratio correlated with the thickness of the protein films and Bi(1) (+) primary ions produced the most surface sensitive spectra.  相似文献   

19.
Linked scans are commonly used on double-focusing mass spectrometers to obtain tandem mass spectrometry (MS/MS) spectra. The appearance of artifact peaks in linked scan MS/MS spectra from dissociations occurring in the first field-free region are a result of poor parent ion resolution, and they often can complicate the interpretation of the MS/MS spectra. The kinetic energy release associated with dissociation of ions of similar m/z to the “selected” parent ion is the main factor in determining the intensity of artifact peaks. A means of predicting the intensities of these artifact peaks in product ion and constant neutral loss scans is presented here. The method requires straightforward calculations based on Lacey-Macdonaldion intensity diagrams. The exact calculations require knowledge of the kinetic energy release of a particular dissociation, the kinetic energy spread of the main beam, and the parent ion and product ion mass-to-charge ratios. Adequate predictions, however, can be made by assuming a general kinetic energy release for any given reaction and a typical instrument energy resolution. Theoretical predictions are in good agreement with experimental data obtained from the product ion scans of unlabeled and isotopically labeled tirilazad and unlabeled and labeled leucine enkephalin methyl ester. There is also excellent agreement between experiment and theory in the constant neutral loss scans of rubidium bromide clusters.  相似文献   

20.
The formation of linoleic acid radical species under the oxidative conditions of the Fenton reaction (using hydrogen peroxide and Fe (II)) was monitored by FAB-MS and ES-MS using the spin trap 5,5-dimethyl-1-pyrrolidine-N-oxide, DMPO. Both the FAB and ES mass spectra were very similar and showed the presence of ions corresponding to carbon- and oxygen centered spin adducts (DMPO/L*, DMPO/LO*, and DMPO/LOO*). Cyclic structures, formed between the DMPO oxygen and the neighboring carbon of the fatty acid, were also observed. Electrospray tandem mass spectrometry of these ions was performed to confirm the proposed structure of these adducts. All MS/MS spectra showed an ion at m/z 114, correspondent to the [DMPO + H]+, and a fragment ion due to loss of DMPO (loss of 113 Da), confirming that they are DMPO adducts. ES-MS/MS spectra of alkoxyl radical adducts (DMPO/LO*) showed an additional ion at m/z 130 [DMPO - O + H]+, while ES MS/MS of peroxyl radical adducts (DMPO/LOO*) showed a fragment ion at m/z 146 [DMPO - OO + H]+, confirming both structures. Other fragment ions were observed, such as alkyl acylium radical ions, formed by cleavage of the alkyl chain after loss of water and the DMPO molecule. The identification of fragment ions observed in the MS/MS spectra of the different DMPO adducts suggests the occurrence of structural isomers containing the DMPO moiety both at C9 and C13. The use of ES tandem mass spectrometry, associated with spin trapping experiments, has been shown to be a valuable tool for the structural characterization of carbon and oxygen-centered spin adducts of lipid radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号