共查询到20条相似文献,搜索用时 15 毫秒
1.
Leung KC Aricó F Cantrill SJ Stoddart JF 《Journal of the American Chemical Society》2005,127(16):5808-5810
The versatility and efficiency of dynamic covalent chemistry (DCC) has been exploited in the convergent synthesis of mechanically interlocked dendrimers that are based upon the mutual recognition expressed between secondary dialkylammonium ions and crown ether-like macrocycles. Reversible imine bond formation is employed to clip two acyclic fragments, one of them a diformylpyridine unit bearing a dendritic side chain, and the other a complementary dianiline in the shape of the di(o-aminophenyl)ether of tetraethylene glycol, around each arm of a tritopic trisammonium ion core, thereby affording a branched [4]rotaxane. This template-directed strategy has been demonstrated to work in very high yields (>90%) with successive generations (G0-G2) of a modified Fréchet-type dendritic wedge attached to the 4-position of the diformylpyridine unit. Reduction of these dynamic dendritic systems is achieved upon treatment with borane.THF and results in kinetically stable compounds. The inherent modularity of the overall process should allow for the rapid and straightforward access to many other analogous mechanically interlocked systems in which either the branched core or the dendritic periphery can be modified to suit the needs of any given application of these molecules. Indeed, the dynamic nature of the initial thermodynamically mediated assembly could be utilized in order to amplify particular products from a potential library as a result of a selective recognition process. 相似文献
2.
Aricó F Chang T Cantrill SJ Khan SI Stoddart JF 《Chemistry (Weinheim an der Bergstrasse, Germany)》2005,11(16):4655-4666
The template-directed construction of crown-ether-like macrocycles around secondary dialkylammonium ions (R2NH2+) has been utilized for the expedient (one-pot) and high-yielding synthesis of a diverse range of mechanically interlocked molecules. The clipping together of appropriately designed dialdehyde and diamine compounds around R2NH2+-containing dumbbell-shaped components proceeds through the formation, under thermodynamic control, of imine bonds. The reversible nature of this particular reaction confers the benefits of "error-checking" and "proof-reading", which one usually associates with supramolecular chemistry and strict self-assembly processes, upon these wholly molecular systems. Furthermore, these dynamic covalent syntheses exploit the efficient templating effects that the R2NH2+ ions exert on the macrocyclization of the matched dialdehyde and diamine fragments, resulting not only in rapid rates of reaction, but also affording near-quantitative conversion of starting materials into the desired interlocked products. Once assembled, these "dynamic" interlocked compounds can be "fixed" upon reduction of the reversible imine bonds (by using BH3.THF) to give kinetically stable species, a procedure that can be performed in the same reaction vessel as the inital thermodynamically controlled assembly. Isolation and purification of the mechanically interlocked products formed by using this protocol is relatively facile, as no column chromatography is required. Herein, we present the synthesis and characterization of 1) a [2]rotaxane, 2) a [3]rotaxane, 3) a branched [4]rotaxane, 4) a bis [2]rotaxane, and 5) a novel cyclic [4]rotaxane, demonstrating, in incrementally more complex systems, the efficacy of this one-pot strategy for the construction of interlocked molecules. 相似文献
3.
Template-directed oligonucleotide strand ligation, covalent intramolecular DNA circularization and catenation using click chemistry 总被引:2,自引:0,他引:2
Kumar R El-Sagheer A Tumpane J Lincoln P Wilhelmsson LM Brown T 《Journal of the American Chemical Society》2007,129(21):6859-6864
The copper-catalyzed azide-alkyne cycloaddition reaction has been used for the template-mediated chemical ligation of two oligonucleotide strands, one with a 5'-alkyne and the other with a 3'-azide, to produce a DNA strand with an unnatural backbone at the ligation point. A template-free click-ligation reaction has been used for the intramolecular circularization of a single stranded oligonucleotide which was used as a template for the synthesis of a covalently closed DNA catenane. 相似文献
4.
Annick Vidonne 《Tetrahedron》2008,64(36):8464-8475
A kinetic model for the integration of self-replication with the formation of a mechanically interlocked molecular architecture, namely a rotaxane, is presented. The logical steps required to convert this model into molecular structures through consideration of the design criteria highlighted by the model are discussed and executed. Ultimately, despite careful design, the rotaxane synthesised did not replicate as expected. The reasons for this failure are traced by experiment and computation to the sub-optimal association constant for the pseudorotaxane complex required to form the replicating rotaxane. Additionally, a deleterious supramolecular steric effect, operating through the proximity of the macrocyclic component of the pseudorotaxane to the transition state for the stoppering reaction is identified computationally. 相似文献
5.
AJ Clipson VT Bhat I McNae AM Caniard DJ Campopiano MF Greaney 《Chemistry (Weinheim an der Bergstrasse, Germany)》2012,18(34):10562-10570
A bivalent dynamic covalent chemistry (DCC) system has been designed to selectively target members of the homodimeric glutathione-S-transferase (GST) enzyme family. The dynamic covalent libraries (DCLs) use aniline-catalysed acylhydrazone exchange between bivalent hydrazides and glutathione-conjugated aldehydes and the bis-hydrazides act as linkers to bridge between each glutathione binding site. The resultant DCLs were found to be compatible and highly responsive to templating with different GST isozymes, with the best results coming from the M and Schistosoma japonicum (Sj) class of GSTs, targets in cancer and tropical disease, respectively. The approach yielded compounds with selective, nanomolar affinity (K(i) =61?nM for mGSTM1-1) and demonstrates that DCC can be used to simultaneously interrogate binding sites on different subunits of a dimeric protein. 相似文献
6.
Granzhan A Schouwey C Riis-Johannessen T Scopelliti R Severin K 《Journal of the American Chemical Society》2011,133(18):7106-7115
A modular approach for the synthesis of cage structures is described. Reactions of [(arene)RuCl(2)](2) [arene = p-cymene, 1,3,5-C(6)H(3)Me(3), 1,3,5-C(6)H(3)(i-Pr)(3)] with formyl-substituted 3-hydroxy-2-pyridone ligands provide trinuclear metallamacrocycles with pendant aldehyde groups. Subsequent condensation reactions with di- and triamines give molecular cages with 3, 6, or 12 Ru centers in a diastereoselective and chemoselective (self-sorting) fashion. Some of the cages can also be prepared in one-pot reactions by mixing [(arene)RuCl(2)](2) with the pyridone ligand and the amine in the presence of base. The cages were comprehensively analyzed by X-ray crystallography. The diameter of the largest dodecanuclear complex is ~3 nm; the cavity sizes range from 290 to 740 ?(3). An amine exchange process with ethylenediamine allows the clean conversion of a dodecanuclear cage into a hexanuclear cage without disruption of the metallamacrocyclic structures. 相似文献
7.
8.
We report the template-directed synthesis of a well-defined, kinetically stable [5]molecular necklace with dialkylammonium ion (R(2)NH(2)(+)) as recognition site and DB24C8 as macrocycle. A thread containing four dialkylammonium ions with olefin at both ends was first synthesized and then subjected to threading with an excess amount of DB24C8 to form pseudo[5]rotaxane, which in situ undergoes ring closing metathesis at the termini with second generation Grubbs catalyst to yield the desired [5]molecular necklace. The successful synthesis of [5]molecular necklace is mainly attributed to the self-assembly and dynamic covalent chemistry which allows the formation of thermodynamically most stable product. The self-assembly of the DB24C8 ring onto the recognition site known as templating effect was driven by noncovalent stabilizing interactions like [N(+)-H···O], [C-H···O] hydrogen bonds as well as [π···π] interactions which is facilitated in non-polar solvents. The reversible nature of olefin metathesis reaction makes it suitable for dynamic covalent chemistry since proof-reading and error-checking operates until it generates thermodynamically the most stable interlocked molecule. Riding on the success of [5]molecular necklace, we went a step further and attempted to synthesize [7]molecular necklace using the same protocol. This led to the synthesis of another thread with olefin at both ends but having six dibenzylammonium ions along the thread. However, the extremely poor solubility of this thread containing six secondary ammonium ions limits the self-assembly process even after we replaced the typical PF(6)(-) counter anion with a more lipophilic BPh(4)(-) anion. Although the poor solubility of the thread remains the bottleneck for making higher order molecular necklaces yet this approach of "threading-followed-by-ring-closing-metathesis" for the first time produces kinetically and thermodynamically stable, well-defined, homogeneous molecular necklace which was well characterized by one-dimensional, two-dimensional, variable temperature proton NMR spectroscopy and ESI mass spectroscopy. 相似文献
9.
Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. In methanol solution, all possible Michael adducts were obtained in similar amounts. Addition of vesicles to the dynamic covalent library led to the formation of a single major product. The equilibrium constants for formation of the Michael adducts are similar for all of the thiols used in this experiment, and the effect of the vesicles on the composition of the library is attributed to the differential partitioning of the library members between the lipid bilayer and the aqueous solution. The results provide a quantitative approach for exploiting dynamic covalent chemistry within lipid bilayers.Vesicle lipid bilayers have been employed as templates to modulate the product distribution in a dynamic covalent library of Michael adducts formed by mixing a Michael acceptor with thiols. 相似文献
10.
This tutorial review describes the evolution of the field of chemical templation, in particular, emphasising the impact its application has made to the synthesis of mechanically interlocked structures. Recent advances in the use of negatively charged template species for the synthesis of interlocked structures are detailed, with the main focus of this review describing the development of a general anion templation strategy that combines anion recognition with ion-pairing. The versatility of this methodology is demonstrated by the chloride anion templated synthesis of a series of interpenetrated pseudorotaxane, rotaxane and catenane structures. Upon template removal, the mechanically interlocked rotaxanes and catenanes are shown to bind anions within their topologically unique anion binding clefts by virtue of electrostatic and hydrogen bonding interactions, exhibiting a strong selectivity for the chloride halide anion template. The incorporation of the photo-active rhenium(I) bipyridyl signalling group into the rotaxane structural framework highlights the potential of these interlocked systems in future chemical sensor design. 相似文献
11.
Lyndsey M. Greig 《Tetrahedron》2007,63(11):2391-2403
10-Hydroxy-10,9-boroxophenanthrene reacts rapidly and reversibly with both benzylic and alkane diols in non-polar solvents. The formation of 2:1 adducts between the boroxoaromatic and the diols is favoured. The diol component of the adduct can be exchanged readily and rapidly by treatment of the boroxoaromatic-diol adduct with an alternative diol in solution at room temperature. This reversible covalent chemistry would appear to be ideal for the dynamic assembly of more complex superstructures. However, attempts to extend this dynamic equilibrium to the assembly of macrocycles using the bifunctional boroxoaromatic 5,9-dihydroxy-5,9-dibora-4,10-dioxopyrene failed as a result of changes in the reactivity of the boron centre in the bifunctional boron-containing compound. 相似文献
12.
Reversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. A peptide substrate and papain, caged as the mixed disulfide with methane thiol, were encapsulated inside vesicles, which contained Michael acceptors embedded in the lipid bilayer. In the absence of the Michael acceptor, addition of thiols to the external aqueous solution did not activate the enzyme to any significant extent. In the presence of the Michael acceptor, addition of benzyl thiol led to uncaging of the enzyme and hydrolysis of the peptide substrate to generate a fluorescence output signal. A charged thiol used as the input signal did not activate the enzyme. A Michael acceptor with a polar head group that cannot cross the lipid bilayer was just as effective at delivering benzyl thiol to the inner compartment of the vesicles as a non-polar Michael acceptor that can diffuse across the bilayer. The concentration dependence of the output signal suggests that the mechanism of signal transduction is based on increasing the local concentration of thiol present in the vesicles by the formation of Michael adducts. An interesting feature of this system is that enzyme activation is transient, which means that sequential addition of aliquots of thiol can be used to repeatedly generate an output signal.Reversible formation of covalent adducts between a thiol and a membrane-anchored Michael acceptor has been used to control the activation of a caged enzyme encapsulated inside vesicles. 相似文献
13.
Tom Kunde Tobias Pausch Piotr A. Guka Maurycy Krzyanowski Artur Kasprzak Bernd M. Schmidt 《Chemical science》2022,13(10):2877
A simple, solvent-free synthetic protocol towards the synthesis of organic self-assembled macromolecules has been established. By employing mechanochemistry using glassware readily available to every organic chemist, we were able to synthesise three novel organic cage compounds exemplarily and to speed up the synthesis of a ferrocene-containing macrocycle by a factor of 288 compared to the solution-based synthesis. The structural investigation of the newly synthesised cages revealed different modes of connectivity from using ferrocene-containing aldehydes caused by the free rotation of the cyclopentadienyl units against each other. By extending the facile solvent-free synthesis to ball-milling, even compounds that show lower reactivity could be employed in the dynamic covalent formation of organometallic cage compounds. The presented protocol gives access to otherwise inaccessible structures, speeds up general synthetic workflows, and simultaneously reduces the environmental impact of supramolecular syntheses.Using mechanochemistry and glassware readily available to every organic chemist, a simple, solvent-free synthetic protocol for self-assembled macromolecules containing ferrocenes is presented. 相似文献
14.
The dynamic multicomponent syntheses of nanometer-sized chiral molecular cubes 1a and 1b from 8 tritopic 90 degree corner units and 12 linear spacers using an edge-directed approach is described. Thus, the TFA-catalyzed reaction of 8 equiv C3-trihexadecyloxy-triformylcyclotribenzylene 2 as corner unit with 12 equiv of 1,4-phenylenediamine 3a or benzidine 3b as spacers yields nanocubes 1a and 1b, respectively in close to quantitative yield. The same reactions carried out with enantiomerically pure (P)-2 (>99% ee) gave the homochiral cubes (all-P)-1a and (all-P)-1b. Force field calculations predict an edge length of 17 A and 21 A for 1a and 1b, which is consistent with their dimensions estimated from DOSY experiments. Furthermore, the asymmetric synthesis of (P)-2 through a dynamic thermodynamic resolution is described. This approach is based on the TFA-catalyzed reaction of racemic 2 with (R,R)-1,2-diaminocyclohexane (R)-5, which leads to a chiral cryptophane (>90% yield) that is built-up from two (P)-2 linked together with three diamines (R)-5. Hydrolysis of this cryptophane provides (P)-2 with >99% ee. 相似文献
15.
Filip Van Lijsebetten Kevin De Bruycker Evelyne Van Ruymbeke Johan M. Winne Filip E. Du Prez 《Chemical science》2022,13(43):12865
Dynamic covalent networks present a unique opportunity to exert molecular-level control on macroscopic material properties, by linking their thermal behaviour to the thermodynamics and kinetics of the underlying chemistry. Yet, existing methods do not allow for the extraction and analysis of the influence of local differences in chemical reactivity caused by available reactants, catalysts, or additives. In this context, we present a rheological paradigm that allows us to correlate the composition of a reactive polymer segment to a faster or slower rate of network rearrangement. We discovered that a generalised Maxwell model could separate and quantify the dynamic behaviour of each type of reactive segment individually, which was crucial to fully comprehend the mechanics of the final material. More specifically, Eyring and Van ''t Hoff analysis were used to relate possible bond catalysis and dissociation to structural changes by combining statistical modelling with rheology measurements. As a result, precise viscosity changes could be measured, allowing for accurate comparison of various dynamic covalent network materials, including vitrimers and dissociative networks. The herein reported method therefore facilitated the successful analysis of virtually any type of rate-enhancing effect and will allow for the design of functional and fast (re)processable materials, as well as improve our ability to predict and engineer their properties for future applications.A novel characterisation method is presented to link molecular reactivity changes to material properties of reprocessable thermosets with unique performance. 相似文献
16.
Meadows PJ Dujardin E Hall SR Mann S 《Chemical communications (Cambridge, England)》2005,(29):3688-3690
Self-assembly of porphyrin nanotapes in the presence of alkoxysilane reaction solutions produces hybrid nanofilaments consisting of an optically responsive J-aggregate core encased within an ultrathin shell of amorphous silica. 相似文献
17.
18.
19.
Romain Barat Thibaut Legigan Isabelle Tranoy-Opalinski Brigitte Renoux Elodie Péraudeau Jonathan Clarhaut Pauline Poinot Antony E. Fernandes Vincent Aucagne David A. Leigh Sébastien Papot 《Chemical science》2015,6(4):2608-2613
The development of mechanically interlocked molecular systems programmed to operate autonomously in biological environments is an emerging field of research with potential medicinal applications. Within this framework, functional rotaxane- and pseudorotaxane-based architectures are starting to attract interest for the delivery of anticancer drugs, with the ultimate goal to improve the efficiency of cancer chemotherapy. Here, we report an enzyme-sensitive [2]-rotaxane designed to release a potent anticancer drug within tumor cells. The molecular device includes a protective ring that prevents the premature liberation of the drug in plasma. However, once located inside cancer cells the [2]-rotaxane leads to the release of the drug through the controlled disassembly of the mechanically interlocked components, in response to a determined sequence of two distinct enzymatic activations. Furthermore, in vitro biological evaluations reveal that this biocompatible functional system exhibits a noticeable level of selectivity for cancer cells overexpressing β-galactosidase. 相似文献