首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Although many organic/inorganic compounds that release nitric oxide (NO) upon photoirradiation (phototriggered caged-NOs) have been reported, their photoabsorption wavelengths mostly lie in the UV region, because X-NO bonds (X=heteroatom and metal) generally have rather strong π-bond character. Thus, it is intrinsically difficult to generate organic compounds that release NO under visible light irradiation. Herein, the structures and properties of N-pyramidal nitrosamine derivatives of 7-azabicyclo[2.2.1]heptanes that release NO under visible light irradiation are described. Bathochromic shifts of the absorptions of these nitrosamines, attributed to HOMO (n)-LUMO (π*) transitions associated with the nonplanar structure of the N-NO moiety, enable the molecules to absorb visible light, which results in N-NO bond cleavage. Thus, these compounds are innate organic caged-NOs that are uncaged by visible light.  相似文献   

6.
7.
8.
9.
A novel complex containing a 3,8-bis[terthiophenyl-(1,10-phenanthroline)] ligand coordinated to [Ru(bpy)(2)] was synthesized and characterized by electrochemical and spectroscopic techniques. The complex was shown to be a suitable starting material for the electrodeposition of functionalized molecular wires between nanogap electrodes to generate stable molecular nanodevices. Temperature-dependent nonlinear I-V curves were obtained at 80-300 K. The material can also be deposited on indium tin oxide (ITO) to form compact electrochromic films at surface concentrations lower than approximately 1 x 10(-8) mol cm(2); however, a more loosely bond fibrous form is preferentially deposited at higher surface concentrations.  相似文献   

10.
11.
During the past years, there has been increasing interest in endogenous nitric oxide storage compounds. Recently, we briefly reported on the ascorbate-dependent release of nitric oxide ((.)NO) from N-nitrosotryptophan derivatives. In the present study, the underlying mechanism of (.)NO release is studied in more detail, primarily utilizing N-acetyl-N-nitrosotryptophan (NANT) as a model compound. The initial rate of the ascorbate-induced release of nitric oxide has been found to correspond to the rate of NANT decay. In this process, N-acetyltryptophan (NAT) is produced almost quantitatively. The final yield of nitrite amounted to around 90 % with respect to the applied amount of NANT. However, the total release of nitric oxide was only 60 %, as determined by using an FNOCT-4(fluorescent nitric oxide cheletropic trap number 4) assay. Besides nitric oxide, a second volatile product, dinitrogen oxide (N(2)O), has been identified by using (15)N NMR spectrometry, strongly indicating the intermediacy of nitroxyl (HNO). The formation of intermediate ascorbyl radical anions during the NANT-ascorbate reaction has been monitored by using ESR spectrometry. Unexpectedly, it was found that the primary oxidized product of vitamin C, dehydroascorbic acid (DHA), efficiently consumes nitric oxide. Since ESR spectrometry further revealed that ascorbyl radical anions are also generated during the spontaneous decay of DHA, the DHA-nitric oxide reaction is related to recombination of (.)NO with the thus formed ascorbyl radical anions. A conclusively established mechanism of the NANT-ascorbate reaction is presented, with O-nitrosoascorbate as a key intermediate, as additionally supported by CBS-QB3 calculations. The present study suggests that vitamin C and its oxidation products can chemically counterbalance endogenous nitric oxide levels.  相似文献   

12.
13.
Synthesis of alternating pyridine–pyrrole molecular strands composed of two electron‐rich pyrrole units (donors) sandwiched between three pyridinic cores (acceptors) is described. The envisioned strategy was a smooth electrosynthesis process involving ring contraction of corresponding tripyridyl–dipyridazine precursors. 2,6‐Bis[6‐(pyridazin‐3‐yl)]pyridine ligands 2 a – c bearing pyridine residues at the terminal positions were prepared in suitable quantities by a Negishi metal cross‐coupling procedure. The yields of heterocyclic coupling between 2‐pyridyl zinc bromide reagents 12 a – c and 2,6‐bis(6‐trifluoromethanesulfonylpyridazin‐3‐yl)pyridine increased from 68 to 95 % following introduction of electron‐donating methyl groups on the metallated halogenopyridine units. Favorable conditions for preparative electrochemical reduction of tripyridyl–dipyridazines 2 b , c were established in THF/acetate buffer (pH 4.6)/acetonitrile to give the targeted 2,6‐bis[5‐(pyridin‐2‐yl)pyrrol‐2‐yl]pyridines 1 b and 1 c in good yields. The absorption behavior of the donor–acceptor tripyridyl–dipyrrole ligands was evaluated and compared to theoretical calculations. Highly fluorescent properties of these chromophores were found (νem≈2×104 cm?1 in MeOH and CH2Cl2), and both pyrrolic ligands exhibit a remarkable quantum yield in CH2Cl2 (?f=0.10). Structural studies in the solid state established the preferred cis conformation of the dipyrrolic ligands, which adopting a planar arrangement with an embedded molecule of water having a complexation energy exceeding 10 kcal mol?1. The ability of the tripyridyl–dipyrrole to complex two copper(II) ions in a pentacoordinate square was investigated.  相似文献   

14.
15.
16.
17.
18.
19.
Copper(II) complexes of the potentially tripodal N,N,O ligand 3,3-bis(1-methylimidazol-2-yl)propionate (L1) and its conjugate acid HL1 have been synthesised and structurally and spectroscopically characterised. The reaction of equimolar amounts of ligand and CuII resulted in the complexes [Cu(L1)]n(X)n (X=OTf-, PF6(-); n=1,2), for which a new bridging coordination mode of L1 is inferred. Although these complexes showed moderate catecholase activity in the oxidation of 3,5-di-tert-butylcatechol, surprising reactivity with the pseudo-substrate tetrachlorocatechol was observed. A chloranilato-bridged dinuclear CuII complex was isolated from the reaction of [Cu(L1)]n(PF6)n with tetrachlorocatechol. This stoichiometric oxidative double dehalogenation of tetrachlorocatechol to chloranilic acid by a biomimetic copper(II) complex is unprecedented. The crystal structure of the product, [Cu2(ca)Cl2(HL1)2], shows a bridging bis-bidentate chloranilato (ca) ligand and ligand L1 coordinated as its conjugate acid (HL1) in a tridentate fashion. Magnetic susceptibility studies revealed weak antiferromagnetic coupling (J= -35 cm(-1)) between the two copper centres in the dinuclear complex. Dissolution of the green complex [Cu2(ca)Cl2(HL1)2] resulted in the formation of new pink-purple mononuclear compound [Cu(ca)(HL1)(H2O)], the crystal structure of which was determined. It showed a terminal bidentate chloranilato ligand and N,N-bidentate coordination of ligand HL1, which illustrates the flexible coordination chemistry of ligand L1.  相似文献   

20.
Six organic–inorganic hybrid materials were synthesized by the in situ oxidation of neocuproine by using MoO3/Na2MoO4 as the catalyst in the presence of Cu(NO3)2. The crystal structures of Mo8‐Cu4‐PHEN and Mo8‐Cu2‐5(2PIC) are composed of [Mo8O26]4? polyoxometalate (POM) units, whereas the crystal structure of Mo6‐Cu‐COPHEN is composed of a [Mo6O19]2? POM unit; both POM units could be considered as the active form of the catalyst. Reaction of the hybrid materials with 1,3,5‐benzenetricarboxylic acid (BTC) resulted in the formation of two different coordination polymers (CPs) under different reaction conditions. These CPs, depending on their structural attributes, exhibit distinct differences in the adsorption of H2, CO2, and water. The use of 2‐methylpyridine instead of neocuproine does not give any oxidation products under the same reaction conditions due to the incorrect positioning of the methyl group with respect to the CuII center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号