首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Microvasculature plays a decisive role on the normal operation of the human body. Previous studies have shown that the causes of microvascular hemolytic anemia and other diseases are closely related to the interaction between micro-thrombi and RBCs. The movement and deformation of Red Blood Cells (RBCs) in microvasculature with hemicyclic micro-thrombi of different sizes on the wall are simulated based on the Moving Particle Semi-implicit method (MPS) and the spring network model of RBCs membrane. Simulation of a single RBC passing the straight blood vessel indicates the strong squeeze of the RBC caused by the thrombus, which leads to a 38.5% increasing of the RBC velocity and a greater deformation, and such squeeze effect is positively related with the size of the thrombus. When two RBCs pass through the straight blood vessel with two thrombi on the both sidewalls, the deformation of the RBCs first increases and then decreases. Results show that when the axial position between the two thrombi is 10 × d0 different, the deformation of RBCs reaches the maximum of 3.10 (upper) and 2.79 (lower), respectively. When two side-by-side RBCs pass through a bifurcated blood vessel with a sidewall thrombus, the velocity and deformation of RBCs are greatly affected by the thrombus. When the thrombus radius changes from 0 × d0 to 20 × d0, the peak velocities of the two cells increase by 51.6% (upper) and 67.9% (lower), respectively.  相似文献   

2.
Red blood cells (RBCs) suspended in a high-viscosity medium were filmed while flowing through a microchannel using an automated rheoscope. Under these conditions, erythrocytes take different orientations and undergo varying deformation according to their location in the velocity profile. Measurements of the mean deformation at several distances from the center of the microchannel at a constant flow rate were acquired for normal and thalassemia erythrocytes. The measurements demonstrate how diagnosis can be made based on a single flow rate in contrast to conventional methods where shear is mechanically controlled. The spatial distribution and velocity of RBCs and rigid microspheres (1 μm) were measured. The maximum slip velocity was found to be linearly correlated to the flow rate for both cells and microspheres. RBCs showed enhanced inward lateral migration compared to the rigid spheres, which is attributed to RBC deformation. The results demonstrate the coupling between RBC mechanical properties and their motion in microvessels. This paper was presented at Annual European Rheology Conference (AERC) held in Hersonisos, Crete, Greece, April 27-29, 2006.  相似文献   

3.
To model red blood cell (RBC) deformation and multiple‐cell interactions in flow, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method is extended to employ the mesoscopic network model for simulations of RBCs in flow. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling RBC deformation. The fluid–RBC interactions are enforced by the Lagrange multiplier. To validate parameters of the RBC network model, stretching tests on both coarse and fine meshes are performed and compared with the corresponding experimental data. Furthermore, RBC deformation in pipe and shear flows is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows. Moreover, hydrodynamic interactions between two RBCs are studied in pipe flow. Numerical results illustrate that the leading cell always has a larger flow velocity and deformation, while the following cells move slower and deform less.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
By using our new air-bearing viscometer different types of transient flow can be studied; in the present work this viscometer was specifically applied to non-Newtonian blood suspensions. To observe the influence of both the aggregation and the deformation of red blood cells (RBCs), different concentrations of fibrinogen and dextran were used: the suspended RBCs were simply washed or rigidified with diamide. From the data three rheological parameters were determined, two of which are relative to the behavior at low and at high shear gradients, respectively. Their values were related to the theory of Taylor, and the internal viscosity of RBCs was estimated to be around 3 cp.  相似文献   

5.
An immersed boundary method based on an FEM has been successfully combined with an elastic spring network model for simulating the dynamical behavior of a red blood cell (RBC) in Poiseuille flows. This elastic spring network preserves the biconcave shape of the RBC in the sense that after the removal of the body force for driving the Poiseuille flow, the RBC with its typical parachute shape in a tube does restore its biconcave resting shape. As a benchmark test, the relationship between the deformation index and the capillary number of the RBCs flowing through a narrow cylindrical tube has been validated. For the migration properties of a single cell in a slit Poiseuille flow, a slipper shape accompanied by a cell membrane tank‐treading motion is obtained for Re , and the cell mass center is away from the center line of the channel due to its asymmetric slipper shape. For the lower Re ?0.0137, an RBC with almost undeformed biconcave shape has a tumbling motion. A transition from tumbling to tank‐treading happens at the Reynolds number between 0.0137 and 0.03. In slit Poiseuille flow, the RBC can also exhibit a rolling motion like a wheel during the migration when the cell is released in the fluid flow with φ = π/2 and θ = π/2 (see Figure 12 for the definition of φ and θ). The lower the Reynolds number, the longer the rolling motion lasts; but the equilibrium shape and position are independent from the cell initial position in the channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The lattice Boltzmann method (LBM) combined with the immersed boundary method is a common tool to simulate the movement of red blood cel ls (RBCs) through blood vessels. With very few exceptions, such simulations neglect the difference in viscosities between the hemoglobin solution inside the cells and the blood plasma outside, although it is well known that this viscosity contrast can severely affect cell deformation. While it is easy to change the local viscosity in LBM, the challenge is to distinguish whether a given lattice point is inside or outside the RBC at each time step. Here, we present a fast algorithm to solve this issue by tracking the membrane motion and computing the scalar product between the local surface normal and the distance vector between the closest LBM lattice point and the surface. This approach is much faster than, for example, the ray-casting method. With the domain tracking applied, we investigate the shape transition of a RBC in a microchannel for different viscosity contrast and validate our method by comparing with boundary-integral simulations.  相似文献   

7.
A spring model is applied to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the RBC rheology in two‐dimensional Poiseuille flows using an immersed boundary method. The lateral migration properties of the cells in Poiseuille flows have been investigated. The simulation results show that the rate of migration toward the center of the channel depends on the swelling ratio and the deformability of the cells. We have also combined the above methodology with a fictitious domain method to study the motion of RBCs in a two‐dimensional micro‐channel with a constriction with an application to blood plasma separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In hemodynamics, the inherent intermittency of two-phase cellular-level flow has received little attention. Unsteadiness is reported and quantified for the first time in the literature using a combination of fluorescent dye labeling, time-resolved scanning confocal microscopy, and micro-particle image velocimetry (μPIV). The near-wall red blood cell (RBC) motion of physiologic high-hematocrit blood in a rectangular microchannel was investigated under pressure-driven flow. Intermittent flow was associated with (1) the stretching of RBCs as they passed through RBC clusters with twisting motions; (2) external flow through local obstacles; and (3) transitionary rouleaux formations. Velocity profiles are presented for these cases. Unsteady flow clustered in local regions. Extra-cellular fluid flow generated by individual RBCs was examined using submicron fluorescent microspheres. The capabilities of confocal μPIV post-processing were verified using synthetic raw PIV data for validation. Cellular interactions and oscillating velocity profiles are presented, and 3D data are made available for computational model validation.  相似文献   

9.
Mathematical modeling is performed to simulate forced convection flow of 47 nm- Al2O3/water nanofluids in a microchannel using the lattice Boltzmann method (LBM). Single channel flow and conjugate heat transfer problem are taken into consideration and the heat transfer rate using a nanofluid is examined. Simulations are conducted at low Reynolds numbers (2 ≤ Re ≤ 16). The computed average Nusselt number, which is associated with the thermal conductivity of nanofluid, is in the range of 0.6 £ [`(Nu)] £ 13 0.6 \le \overline{Nu} \le 13 . Results indicate that the average Nusselt number increases with the increase of Reynolds number and particle volume concentration. The fluid temperature distribution is more uniform with the use of nanofluid than that of pure water. Furthermore, great deviations of computed Nusselt numbers using different models associated with the physical properties of a nanofluid are revealed. The results of LBM agree well with the classical CFD method for predictions of flow and heat transfer in a single channel and a microchannel heat sink concerning the conjugate heat transfer problem, and consequently LBM is robust and promising for practical applications.  相似文献   

10.
In this paper, the motion of high deformable (healthy) and low deformable (sick) red blood cells in a microvessel with and without stenosis is simulated using a combined lattice Boltzmann-immersed boundary method. The RBC is considered as neo-Hookean elastic membrane with bending resistance. The motion and deformation of the RBC under different values of the Reynolds number are evaluated. In addition, the variations of blood flow resistance and time-averaged pressure due to the motion and deformation of the RBC are assessed. It was found that a healthy RBC moves faster than a sick one. The apparent viscosity and blood flow resistance are greater for the case involving the sick RBC. Blood pressure at the presence of stenosis and low deformable RBC increases, which is thought of as the reason of many serious diseases including cardiovascular diseases. As the Re number increases, the RBC deforms further and moves easier and faster through the stenosis. The results of this study were compared to the available experimental and numerical results, and good agreements were observed.  相似文献   

11.
The rapid development of two-phase microfluidic devices has triggered the demand for a detailed understanding of the flow characteristics inside microchannel heat sinks to advance the cooling process of micro-electronics. The present study focuses on the experimental investigation of pressure drop characteristics and flow visualization of a two-phase flow in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 276 μm, width of 225 μm, and a length of 16 mm. Experiments are carried out for mass fluxes ranging from 341 to 531 kg/m2 s and heat fluxes from 60.4 to 130.6 kW/m2 using FC-72 as the working fluid. Bubble growth and flow regimes are observed using high speed visualization. Three major flow regimes are identified: bubbly, slug, and annular. The frictional two-phase pressure drop increases with exit quality for a constant mass flux. An assessment of various pressure drop correlations reported in the literature is conducted for validation. A new general correlation is developed to predict the two-phase pressure drop in microchannel heat sinks for five different refrigerants. The experimental pressure drops for laminar-liquid laminar-vapor and laminar-liquid turbulent-vapor flow conditions are predicted by the new correlation with mean absolute errors of 10.4% and 14.5%, respectively.  相似文献   

12.
A novel efficient interface‐tracking method is developed to gain an insight into the interface in a multiphase or multifluid system, called the modified particle binary level set (MPBLS) method, in which the binary level set function is defined to distinguish the different phases or fluids and further modified by Lagrangian particles scattered along the interface for achieving higher accuracy. The validation of the MPBLS method is carried out first by simulating the free motion of a red blood cell (RBC) in the rotating, shear and Poiseuille flows, respectively. Subsequently, further validations are performed by comparing with the experimental and numerical results published previously. As one of important applications, the MPBLS method is employed to investigate the deformation behaviors of RBCs with different shapes in a capillary. The simulations show that the healthy RBC gradually changes the geometric shape from a biconcave to a steady parachute shape. It is thus guaranteed that the RBC successfully traverses through the smaller capillaries compared with undeformed RBC. However, the unhealthy RBC with the circular or elliptical shape has different deformation behaviors, in which the steady parachute shape is much less concave at the rear and more convex in the front. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Total internal reflection velocimetry (TIRV) is applied to measure the dynamics of 17 nm diameter, colloidal quantum dot (QD) tracer particles within 200 nm of a microchannel wall at shear rates in excess of 20,000 s−1. QDs are quickly developing into viable tracer particles for measuring microscale fluid dynamics. However, the low emission intensities of QDs usually require long exposure and inter-frame times, which limit velocity resolution and compromise accuracy (due to their fast diffusion as a consequence of a small diameter). In this study, a two-stage, high-speed image intensifier and camera were integrated into an evanescent wave microscopy imaging system. This provided the necessary temporal resolution to image the fast diffusion dynamics of QDs in real-time (up to 10,000 fps), which allowed individual particles to be tracked continuously for extended periods of time. In addition to examining the trajectories of individual particles, ensemble-averaged tracking measurements reveal near-wall velocity distributions in high-speed microchannel flows (Re ∼ 10), where velocities on the order of 5 mm/s are measured within 200 nm of the microchannel wall. This data provides a robust confirmation of recent results demonstrating diffusion-induced bias error for near-wall velocimetry.  相似文献   

14.
The convective heat transfer behavior of laminar flow through a smooth- and two rough-wall microchannels is investigated by performing non-intrusive and spatially resolved measurements of fluid temperature via two-color fluorescent thermometry under constant heat flux conditions at three of the four microchannel walls. Pressure-drop measurements reveal that the apparent friction factors for all surfaces agree well with established macroscale predictions for laminar flow through rectangular ducts with the onset of transition at Re > Recr = 1,800 for smooth-wall flow and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nu for smooth-wall flow agrees well with macroscale predictions in both the thermally developing and developed regimes. With increasing roughness, while an enhancement in local Nu is noted for flow in the thermally developing regime, no measurable influence is noted upon attainment of a thermally developed state. These observations are supported by the examination of temperature profiles across the microchannel at various axial positions and Re, which suggest that the thermal boundary layer may be regenerated locally by roughness in the thermal entrance region of the flow resulting in an increased axial distance (compared to smooth-wall behavior) at which thermally developed flow is attained in the presence of roughness. Finally, estimates of the bulk Nu indicate enhancement in convective heat transfer over the smooth-wall case for laminar flow at higher Re while the smooth-wall bulk Nu data are found to agree well with macroscale predictions.  相似文献   

15.
RESISTANCE EFFECT OF ELECTRIC DOUBLE LAYER ON LIQUID FLOW IN MICROCHANNEL   总被引:1,自引:0,他引:1  
Poisson-Boltzrnann equation for EDL (electric double layer) and Navier-Stokes equation for liquid flows were numerically solved to investigate resistance effect of electric double layer on liquid flow in microchannel. The dimension analysis indicates that the resistance effect of electric double layer can be estimated by an electric resistance number, which is proportional to the square of the liquid dielectric constant and the solid surface zeta potential, and inverse-proportional to the liquid dynamic viscosity, electric conductivity and the square of the channel width. An "electric current density balancing" (ECDB) condition was proposed to evaluate the flow-induced streaming potential, instead of conventional "electric current balancing" (ECB) condition which may induce spurious local backflow in neighborhood of the solid wall of the microchannel. The numerical results of the flow rate loss ratio and velocity profile are also given to demonstrate the resistance effect of electric double layer in microchannel.  相似文献   

16.
The transient shape of a red blood cell (RBC) in a microcapillary flow is simulated under different initial conditions, including various axis orientations and centroid locations, using the LBM-DLM/FD method, which is derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method. Although the terminal velocity is not sensitive to the initial configuration, the evolution of the velocity and the shape are determined by the initial conditions. The parachute and the slipper shape are the most probable shapes for a deformed RBC in the flow. An RBC with an initial axis orientation of 90 degrees exhibits a more complicated deformation. RBCs have a tendency to move to the centerline of a tube if an offset between the RBC centroid and the centerline exists. Our numerical results are validated by experiments, and some details beyond the experiment are provided.  相似文献   

17.

This study investigates the electromagnetohydrodynamic (EMHD) flow of fractional viscoelastic fluids through a microchannel under the Navier slip boundary condition. The flow is driven by the pressure gradient and electromagnetic force where the electric field is applied horizontally, and the magnetic field is vertically (upward or downward). When the electric field direction is consistent with the pressure gradient direction, the changes of the steady flow rate and velocity with the Hartmann number Ha are irrelevant to the direction of the magnetic field (upward or downward). The steady flow rate decreases monotonically to zero with the increase in Ha. In contrast, when the direction of the electric field differs from the pressure gradient direction, the flow behavior depends on the direction of the magnetic field, i.e., symmetry breaking occurs. Specifically, when the magnetic field is vertically upward, the steady flow rate increases first and then decreases with Ha. When the magnetic field is reversed, the steady flow rate first reduces to zero as Ha increases from zero. As Ha continues to increase, the steady flow rate (velocity) increases in the opposite direction and then decreases, and finally drops to zero for larger Ha. The increase in the fractional calculus parameter α or Deborah number De makes it take longer for the flow rate (velocity) to reach the steady state. In addition, the increase in the strength of the magnetic field or electric field, or in the pressure gradient tends to accelerate the slip velocity at the walls. On the other hand, the increase in the thickness of the electric double-layer tends to reduce it.

  相似文献   

18.
A flow and heat transfer numerical simulation is performed for a 2D laminar incompressible gas flow through a constricted microchannel in the slip regime with constant wall temperature. The effects of rarefaction, creeping flow, first order slip boundary conditions and hydrodynamically/thermally developing flow are assumed. The effects of Knudsen number and geometry on thermal and hydrodynamic characteristics of flow in a constricted microchannel are explored. SIMPLE algorithm in curvilinear coordinate is used to solve the governing equations including continuity, energy and momentum with the temperature jump and velocity slip conditions at the solid walls in discretized form. The resulting velocity and temperature profiles are then utilized to obtain the microchannel C f Re and Nusselt number as a function of Knudsen number and geometry. The results show that Knudsen number has declining effect on the C f Re and Nusselt number in the constricted microchannel. In addition, the temperature jump on wall and slip velocity increase with increasing Knudsen number. Moreover, by decreasing the throttle area, the fluid flow characteristics experience more intense variations in the constricted region. To verify the code a comparison is carried out with available results and good agreement is achieved.  相似文献   

19.
This paper numerically examines the laminar forced convection of a water–Al2O3 nanofluid flowing through a horizontal microchannel. The middle section of the microchannel is heated with a constant and uniform heat flux. The middle section is also influenced by a transverse magnetic field with a uniform strength. The effects of pertinent parameters such as the Reynolds number (0≤Re≤1000), the solid volume fraction (0≤?≤0.04) and the Hartmann number (0≤Ha≤100) on the flow and temperature fields and the heat transfer performance of the microchannel are examined against numerical predictions. The results show that the microchannel performs better heat transfers at higher values of the Reynolds and Hartmann numbers. For all values of the Reynolds and Hartmann numbers considered in this study, the average Nusselt number on the middle section surface of the microchannel increases as the solid volume fraction increases. The rate of this increase is considerably more at higher values of the Reynolds number and at lower values of the Hartmann number.  相似文献   

20.
Studies have been made of concentrated (up to 60%) diatomite suspensions in transformer oil, the structure and theological properties of which depend on an applied electric field. Studies have been conducted of steady-state and transient regimes of straining involving continuous and periodic shear. The structure in such suspensions is formed in the presence of an electric field of 10–3 –102 duration. The suspensions under continuous stationary strain behave as non-Newtonian fluids with a yield stress dependent on electric intensity. Under periodic deformation conditions the test suspensions exhibit elasticity which abruptly diminishes with increasing deformation amplitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号