共查询到20条相似文献,搜索用时 93 毫秒
1.
通过电沉积的方式在多壁碳纳米管(MWCNTs)修饰玻碳电极表面上沉积铂(pt)纳米粒子,并运用循环伏安法(CV)、示差脉冲伏安法(DPV)探讨了芦丁在铂纳米/碳纳米管/玻碳电极上的电化学行为.实验结果表明,芦丁在该修饰电极上呈现一对良好氧化还原峰,其氧化峰电流与浓度在3.2×10(-8)~1.2×10(-5)mol/L... 相似文献
2.
多壁碳纳米管(MWCNT)和纳米金溶胶(AuNPs)经混合分散后修饰于玻碳电极表面,制成复合纳米材料修饰电极。采用循环伏安法研究了2,4-二硝基苯酚(2,4-DNP)在该修饰电极上的电化学行为,试验表明复合修饰电极对2,4-DNP具有良好的电催化作用。循环伏安曲线上观察到一对可逆的氧化还原峰,氧化峰电位为0.183V,还原峰电位为0.125V。同时对影响2,4-DNP电化学测量的试验条件进行了优化。在最佳条件下,2,4-DNP浓度在5.0×10-6~4.0×10-4 mol·L-1范围内与其氧化峰电流呈线性关系,在此基础上,提出了直接测定2,4-DNP的线性扫描伏安法,回收率在94.0%~104%之间,测定值的相对标准偏差(n=6)在2.0%~3.0%之间。 相似文献
3.
考查了曲酸在多壁碳纳米管化学修饰电极上的电化学行为,相对于裸玻碳电极,多壁碳纳米管化学修饰电极测定曲酸的峰电流明显增加.示差脉冲伏安法测定曲酸的线性范围为1.0×10-5~1.0×10-9mol·L-1,检出限(3S/N)为5.0×10-6mol·L-1.用此修饰电极连续测定一种酱油样品的曲酸含量,得到一致的结果,而用裸玻碳电极时所得结果明显降低,由此可见,修饰电极的稳定性显著提高.方法用于酱油、黄酒等复杂样中曲酸的直接测定,加标平均回收率为99.5%,测定值的相对标准偏差均小于5%. 相似文献
4.
通过电聚合和电沉积方法首次制得聚(三聚氰胺)和金纳米粒共修饰的电极(PMel/Au/GCE),并对修饰电极进行交流阻抗电化学分析。采用循环伏安法研究了芦丁在修饰电极上的电化学行为,发现其氧化峰电流和还原峰电流较裸玻碳电极(GCE)以及聚(三聚氰胺)修饰的电极(PMel/GCE)明显增强,提高了检测的灵敏度。对溶液的pH值、金纳米粒子电沉积时间、三聚氰胺电聚合时间和扫描速率等实验条件进行了优化。采用示差脉冲伏安法对芦丁进行定量分析,芦丁浓度分别在7.8×10-9~1.2×10-6mol/L和1.2×10-6~1.5×10-5mol/L范围内与峰电流呈线性,其相关系数(r2)分别为0.997和0.993,检出限(S/N=3)为5.5×10-9mol/L。将该电极用于市售芦丁片检测,回收率为96.4%~101.8%。 相似文献
5.
6.
碳纳米管修饰金电极检测特定序列DNA 总被引:7,自引:0,他引:7
利用化学偶联法将末端修饰氨基的寡聚核苷酸固定在表面修饰有羧基化碳纳米管(CNTs-COOH)的金电极表面, 制备新型核酸探针, 可以特异性结合目标单链寡聚核苷酸. 以阿霉素作为嵌合指示剂, 利用示差脉冲法测定杂交的结果. 经过实验条件的优化, 测定DNA浓度在1.0×10-6~1.0×10-9 mol/L呈良好的线性关系. 检测限为: 2.54×10-10 mol/L. 碳纳米管特有的纳米结构对检测结果的放大作用, 提高了该传感器的检测限和灵敏度. 相似文献
7.
本文采用循环伏安法(CV)和差分脉冲伏安法(DPV),研究了呋喃唑酮(FZ)在多壁碳纳米管修饰玻碳电极(MWNTs/GCE)上的电化学行为。对影响该修饰电极电流大小的主要条件,如底液的pH值、富集电位和富集时间等进行了优化。结果表明:FZ在MWNTs/GCE上呈现不可逆的还原峰。与裸电极相比,FZ在修饰电极上的还原峰电流明显增大。在最佳的实验条件下,其峰电流随着FZ浓度的增加而增大,在4.9×10-7~5.9×10-5 mol.L-1范围内成线性关系,检测限低至8.0×10-8 mol.L-1。该修饰电极对FZ的测定表现出良好的重现性和稳定性,可用于药物制剂中FZ的定量测定。 相似文献
8.
多壁碳纳米管修饰电极的制备及其应用 总被引:6,自引:0,他引:6
研究了多壁碳纳米管修饰电极的制备方法及其对水飞蓟宾的电催化作用。利用循环伏安法和线性扫描法在乙醇-磷酸盐缓冲溶液中(pH=5.56)研究了水飞蓟宾的电化学特性。水飞蓟宾在多壁碳纳米管修饰电极上,于0.64 V处有一不可逆氧化峰,用线性扫描法建立了其定量方法,线性范围为2.0×10-6~1.0×10-4mol/L,检出限为4.4×10-7mol/L。利用该电极建立了水飞蓟宾的定性、定量方法,该法简便、快速、灵敏。 相似文献
9.
11.
Guifang Cheng 《Analytica chimica acta》2005,533(1):11-16
A novel sensitive electrochemical biosensor based on magnetite nanoparticle for monitoring DNA hybridization by using MWNT-COOH/ppy-modified glassy carbon electrode is described. In this new detection system, mercapatoacetic acid (RSH)-coated magnetite nanoparticles, capped with 5′-(NH2) oligonucleotide, is used as DNA probe to complex 29-base polynucleotide target (a piece of human porphobilinogen deaminase PBGD promoter from 170 to 142). Target sequence hybridized with the probe results in the decrease of the reduction peak current of daunomycin connected with probe. The response of non-complementary sequence was almost the same as the blank, and the response of three-base mismatched sequence within 29-base polynucleotide was obviously distinguished from complementary sequence, which can easily identify point mutation of DNA. The equation of calibration plot is ip (μA) = 0.8255 − 0.0847ctarget oligonucleotide × 1013 in the range of 6.9 × 10−14 to 8.6 × 10−13 mol/L, and correlation coefficient is 0.9974. The detective limit is 2.3 × 10−14 mol/L of target oligonucleotide. This device can be optimized for the detection of complex sequence. 相似文献
12.
We describe a sensitive chronocoulometric biosensor for the sequence-specific detection of DNA. It is based on a glassy carbon electrode modified with multi-walled carbon nanotubes, polydopamine, and gold nanoparticles. The ruthenium(III)hexammine complex acts as the electrochemical indicator. Electrochemical impedance spectra and scanning electron microscopy are employed to investigate the assembly of the electrode surface. The signals of the ruthenium complex electrostatically bound to the anionic phospho groups of the DNA strands are measured by chronocoulometry before and after hybridization. The difference in signal intensity is linearly related to the logarithm of the concentration of the target DNA in the range of 1.0 nM to 10 fM with a detection limit of 3.5fM (S/N?=?3) under optimal conditions. This biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of complementary target DNA in human serum sample with satisfactory results. Figure
We describe a sensitive chronocoulometric biosensor based on a glassy carbon electrode modified with gold nanoparticles, poly(dopamine), and carbon nanotubes. The biosensor exhibits excellent sensitivity and selectivity and has been used for an assay of Helicobacter pylori in human serum with a satisfactory result. 相似文献
13.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility. Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion. 相似文献
14.
An acetylcholinesterase (AChE) purified from maize seedlings was immobilized covalently onto iron oxide nanoparticles (Fe3O4NP) and carboxylated multi walled carbon nanotubes (c-MWCNT) modified Au electrode. An organophosphorus (OP) biosensor was fabricated using this AChE/Fe3O4/c-MWCNT/Au electrode as a working electrode, Ag/AgCl as standard and Pt wire as an auxiliary electrode connected through a potentiostat. The biosensor was based on inhibition of AChE by OP compounds/insecticides. The properties of nanoparticles modified electrodes were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), cyclic voltammograms (CVs) and electrochemical impedance spectroscopy (EIS). The synergistic action of Fe3O4NP and c-MWCNT showed excellent electrocatalytic activity at low potential (+0.4 V). The optimum working conditions for the sensor were pH 7.5, 35 °C, 600 μM substrate concentration and 10 min for inhibition by pesticide. Under optimum conditions, the inhibition rates of OP pesticides were proportional to their concentrations in the range of 0.1–40 nM, 0.1–50 nM, 1–50 nM and 10–100 nM for malathion, chlorpyrifos, monocrotophos and endosulfan respectively. The detection limits were 0.1 nM for malathion and chlorpyrifos, 1 nM for monocrotophos and 10 nM for endosulfan. The biosensor exhibited good sensitivity (0.475 mA μM−1), reusability (more than 50 times) and stability (2 months). The sensor was suitable for trace detection of OP pesticide residues in milk and water. 相似文献
15.
基于多壁碳纳米管/壳聚糖多层膜修饰玻碳电极邻苯二酚的测定 总被引:1,自引:0,他引:1
改进了碳纳米管在壳聚糖溶液中的分散方法,制备了多壁碳纳米管/壳聚糖多层膜修饰玻碳电极,对比了不同修饰层数膜电极的循环伏安和电化学阻抗行为,5层多壁碳纳米管/壳聚糖膜修饰玻碳电极的电化学性能优良.在最优实验条件下,该修饰玻碳电极对邻苯二酚(CAT)有灵敏的响应,CAT浓度在3.99×10-6~9.09×10-4mol/L范围内与氧化峰电流呈良好的线性关系,检出限为2.39×10-6mol/L(S/N=3).该修饰玻碳电极性能稳定,测定4×10-5mol/LCAT溶液,RSD(n=10)为2.1%;15周后,该电极的响应值仅降低1.9%. 相似文献
16.
Natalija German Almira Ramanaviciene Jaroslav Voronovic Arunas Ramanavicius 《Mikrochimica acta》2010,168(3-4):221-229
The electrochemistry of glucose oxidase (GOx) immobilized on a graphite rod electrode modified by gold nanoparticles (Au-NPs) was studied. Two types of amperometric glucose sensors based on GOx immobilized and Au-NPs modified working electrode (Au-NPs/GOx/graphite and GOx/Au-NPs/graphite) were designed and tested in the presence and the absence of N-methylphenazonium methyl sulphate in different buffers. Results were compared to those obtained with similar electrodes not containing Au-NPs (GOx/graphite). This study shows that the application of Au-NPs increases the rate of mediated electron transfer. Major analytical characteristics of the amperometric biosensor based on GOx and 13 nm diameter Au-NPs were determined. The analytical signal was linearly related to glucose concentration in the range from 0.1 to 10 mmol L?1. The detection limit for glucose was found within 0.1 mmol L?1 and 0.08 mmol L?1 and the relative standard deviation in the range of 0.1–100 mol L?1 was 0.04–0.39%. The τ1/2 of V max characterizes the storage stability of sensors: this parameter for the developed GOx/graphite electrode was 49.3 days and for GOx/Au-NPs/graphite electrode was 19.5 days. The sensor might be suitable for determination of glucose in beverages and/or in food. 相似文献
17.
Nan Li Qiang Xu Min Zhou Wei Xia Xingxing Chen Michael Bron Wolfgang Schuhmann Martin Muhler 《Electrochemistry communications》2010,12(7):939-943
Binding of gold nanoparticles (Au-NP) at amine-functionalised multi-walled carbon nanotubes (MWNTs) is proposed. The MWNTs are functionalised with acylchloride groups, which further react with ethylenediamine to form amine-functionalised MWCNTs. These amines are able to bind preformed colloidal Au-NPs. The Au/MWNT composite material facilitates electron-transfer reactions with free-diffusing redox compounds. 相似文献
18.
In this work, silver (Ag) nanoparticles were deposited on multi-walled carbon nanotubes (MWNTs) by chemical reduction while Ag-decorated MWNTs (Ag-MWNTs)/polyaniline (PANI) composites were prepared by oxidation polymerization. The effect of the Ag incorporated into the interface of the composites on the electrochemical performance of the MWNTs/PANI was investigated. It was found that highly dispersed Ag nanoparticles were deposited onto the MWNTs, and the Ag-MWNTs were successfully coated by PANI. According to cyclic voltammograms, the Ag-MWNTs/PANI exhibited significantly increased electrochemical performances compared to MWNTs/PANI and the highest specific capacitance obtained of MWNTs/PANI and 0.15 M Ag-MWNTs/PANI was 162 F/g and 205 F/g, respectively. This indicated that Ag nanoparticles that were deposited onto the MWNTs caused an enhanced electrochemical performance of the MWNTs/PANI due to their high electric conductivity, which resulted in an increase of the charge transfer between the MWNTs and PANI by a bridge effect. 相似文献
19.
A. Carolina Torres M. Emilia Ghica Christopher M. A. Brett 《Analytical and bioanalytical chemistry》2013,405(11):3813-3822
A new and simple-to-prepare hypoxanthine biosensor has been developed using xanthine oxidase (XOD) immobilised on carbon electrode surfaces. XOD was immobilised by glutaraldehyde cross-linking on carbon film (CF) electrodes and on carbon nanotube (CNT) modified CF (CNT/CF). A comparison of the performance of the two configurations was carried out by the current response using amperometry at fixed potential; the best characteristics being exhibited by XOD/CNT/CF modified electrodes. The effects of electrolyte pH and applied potential were evaluated, and a proposal is made for the enzyme mechanism of action involving competition between regeneration of flavin adenine dinucleotide and reduction of hydrogen peroxide. Under optimised conditions, the determination of hypoxanthine was carried out at ?0.2 V vs. a saturated calomel electrode (SCE) with a detection limit of 0.75 μM on electrodes with CNT and at ?0.3 V vs. SCE with a detection limit of 0.77 μM on electrodes without CNT. The applicability of the biosensor was verified by performing an interference study, reproducibility and stability were investigated, and hypoxanthine was successfully determined in sardine and shrimp samples. 相似文献