首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multibubble sonoluminescence (MBSL) emission intensity from aqueous solutions containing simple aliphatic organic acids (RCOOH) and bases (RNH2) and mixtures of the two types of solutes has been examined as a function of pH. In solutions containing either an organic acid or base, under pH conditions where the solutes are predominately in their ionized form (i.e., RCOO- and RNH3+), the MBSL intensity is identical with that obtained in pure water. Alternatively, under pH conditions where the solutes are in their un-ionized form the MBSL intensity is suppressed. However, in solute mixtures of RCOO- and RNH3+ in the pH range of 7 to 9, the MBSL intensity was significantly suppressed relative to that from water. To explain the results of the mixed solute system it has been postulated that when the bubble/solution interface experiences the extreme temperature conditions that accompany bubble collapse, proton transfer occurs between acid-base ion-pair complexes, [RCOO-...RNH3+], adsorbed at the bubble/solution interface. The neutral forms of the solutes then evaporate into the bubble during its expansion phase and through a complex series of events, over a number of bubble oscillations, reduce the core temperature of the collapsing bubble and hence the SL intensity.  相似文献   

2.
A review of the effects of a range of surface active solutes, aliphatic alcohols, alkyl amines, carboxylic acids and surfactants on bubbles exposed to ultrasound is presented. The solutes are shown to affect the phenomenon of sonoluminescence (SL) in quite a number of different ways. Ionic surfactants have a strong influence on interbubble interactions which at low concentrations (1 mM) results in an enhancement in SL. Alcohols and the neutral forms of the organic acids and amines induce SL quenching. The SL quenching is attributed to the formation and accumulation of decomposition products in the hot core of an oscillating bubble resulting from the evaporation of volatile solute adsorbed at the bubble interface. Some results are presented on the influence of low concentrations of alcohol on the SL generated from a single bubble and on the bubble dynamics, when exposed to ultrasound. These results add support to the interpretation given for solute-induced effects observed in multibubble systems. It is also shown that SL can be used as an internal light source to excite aromatic solutes that subsequently fluoresce, a process referred to as sonophotoluminescence.  相似文献   

3.
Cavitation bubble temperatures have been measured using a methyl radical recombination method and compared with the changes in the sonoluminescence intensity in aqueous ethanol solutions over a range of concentrations. Whereas the sonoluminescence intensity was decreased by more than 90% at low ethanol concentrations (<0.1 M), the measured bubble temperatures seem to be unaffected at this level of additive. The cavitation bubble temperatures were noticeably decreased at substantially higher ethanol concentrations (0.5 M). It has been concluded that the methyl radical recombination method does not report on the true sonoluminescence temperatures. However, it does report on the average bubble temperatures at which sonochemical reactions occur.  相似文献   

4.
Single bubble feels the pressure: Sonochemical luminescence has been detected in a single-cavitation bubble within a narrow pressure domain below the sonoluminescence threshold. The parameter space of single-bubble sonochemistry is distinct from that of single-bubble atomic and molecular line emissions.  相似文献   

5.
Sonochemistry and photochemistry are initiated by high-energy transient species, which may be prone to mutual interaction. Electronic excitation of solutes by energy transfer from high energy species generated in collapsing bubbles is already supported by experimental evidence. The rates of photochemical reactions can be affected by ultrasound-induced mixing of liquids caused by microstreaming near pulsating cavitation bubbles and shockwaves due to bubble collapse. This may not only improve light absorption but also modify the pathway of reaction by increasing the contact between reagents. Finally, one may speculate about a potentially new chemistry of photoexcited solutes under the extreme conditions inside cavitation microreactors. This work reviews research on the excitation of solutes by sonoluminescence, the combined effects of ultrasound and light on liquid systems and the effect of ultrasound on photocatalytic reactions.  相似文献   

6.
Single-bubble sonochemiluminescence in aqueous luminol solutions   总被引:1,自引:0,他引:1  
Sonochemiluminescence (SCL) of luminol due to a single bubble is studied through spectral measurement. No SCL was observed from a stable single bubble that emitted high-intensity sonoluminescence (SL). In contrast, SCL was observed under conditions of an unstable dancing bubble, where a bubble grows and ejects tiny bubbles, making it "dance" by counteraction. Furthermore, SCL was observed from dancing bubbles even when SL was not observed, depending on the dissolved gas content. The instability of bubble collapse is the key parameter governing SCL.  相似文献   

7.
Solute-induced quenching of sonoluminescence (SL) is reported for aqueous solutions of two homologous series of methyl esters and ketones using low (20 kHz) and high (515 kHz) ultrasound frequencies. SL data at 20 kHz from aqueous solutions containing alcohols and carboxylic acids are also presented to compare with previously published results at 515 kHz. In addition to supporting the previous findings on the existence of stable and transient bubbles at 515 and 20 kHz, respectively, the results suggest that the hydrogen-bonding characteristics of the solutes also play a major role in the extent of SL quenching. An increase in the SL intensity at low concentrations for most of the solutes suggests that these solutes increase the number of "active" bubbles by hindering the coalescence of bubbles. It is concluded that the effect of the solutes on the SL signal from aqueous solutions at both frequencies is primarily due to the balance of two factors, namely, the incorporation of solute within the bubble, leading to SL quenching, and the prevention of coalescence of the bubbles, leading to SL enhancement. At the higher frequency, SL quenching by the solutes is the main influence on the emission yield. However, at the lower frequency, hindrance to coalescence by the solutes dominates at lower concentrations and leads to SL enhancement. The implications of these results for optimizing conditions for aqueous sonochemical reactions are discussed.  相似文献   

8.
The effect that surface-active solutes, such as aliphatic alcohols and sodium dodecyl sulfate (SDS), have on the extent of bubble coalescence in liquids under different sonication conditions has been investigated by measuring the volume change of the solution following a period of sonication. In general, the adsorption of surface-active solutes onto the bubble surface retards bubble coalescence. Within the limitations of the measurement method and the systems studied, bubble coalescence does not appear to be dependent on the applied acoustic power. Also, varying the applied acoustic frequency has a minimal effect on the extent of bubble coalescence in systems where long-range electrostatic repulsion between bubbles, imparted by the adsorbed surface-active solutes, dominates. However, when short-range steric repulsion (or other short-range repulsive forces) is the primary factor in inhibiting bubble coalescence, the dependence on the applied acoustic frequency becomes apparent, with less coalescence inhibition at higher frequencies. It is also concluded that SDS does not reach an equilibrium adsorption level at the bubble/solution interface under the sonication conditions used. On the basis of this conclusion, a method is proposed for estimating nonequilibrium surface excess values for solutes that do not fully equilibrate with the bubble/solution interface during sonication. For the case of SDS in the presence of excess NaCl, the method was further employed to estimate the maximum lifetime of bubbles in a multibubble field. It was concluded that an acoustic bubble in a multibubble field has a finite lifetime, and that this lifetime decreases with increasing applied frequency, ranging from up to 0.35 +/- 0.05 ms for 213 kHz to 0.10 +/- 0.05 ms for 1062 kHz. These estimated lifetimes equate to a bubble in a multibubble field undergoing an upper limit of 50-200 oscillations over its lifetime for applied ultrasound frequencies between 200 kHz and 1 MHz.  相似文献   

9.
The effect of varying the applied acoustic power on the extent to which the addition of water-soluble solutes affect the intensity of aqueous multibubble sonoluminescence (MBSL) has been investigated. Under most of the experimental conditions used, the addition of aliphatic alcohols to aqueous solutions was found to suppress the MBSL intensity, although an enhancement of the MBSL intensity was also observed under certain conditions. In contrast, the presence of an anionic surfactant sodium dodecyl sulfate (SDS) in aqueous solutions generally enhanced the observed MBSL intensity. For a series of aliphatic alcohols and SDS, a strong dependence of the MBSL intensity on the applied acoustic power (in the range of 0.78-1.61 W/cm(2)) at 358 kHz was observed. The relative SL quenching was significantly higher at higher acoustic powers for the alcohol solutions, whereas the relative SL enhancement was lower at higher acoustic powers in SDS solutions. These observations have been interpreted in terms of a combination of material evaporation into the bubble, rectified diffusion, bubble clustering and bubble-bubble coalescence.  相似文献   

10.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

11.
Numerical simulations of nonequilibrium chemical reactions inside an air bubble in liquid water irradiated by ultrasound have been performed for various ambient bubble radii. The intensity of sonoluminescence (SL) has also been calculated taking into account electron-atom bremsstrahlung, radiative attachment of electrons to neutral molecules, radiative recombination of electrons and ions, chemiluminescence of OH, molecular emission from nitrogen, etc. The lower bound of ambient radius for an active bubble in SL and sonochemical reactions nearly coincides with the Blake threshold for transient cavitation. The upper bound is in the same order of magnitude as that of the linear resonance radius. In actual experiments, however, the distribution of ambient radius for active bubbles may be narrow at around the threshold ambient radius for the shape instability. The threshold peak temperature inside an air bubble for nitrogen burning is higher than that for oxidant formation. The threshold peak temperatures depend on ultrasonic frequency and acoustic amplitude because chemical reactions inside a bubble are in nonequilibrium. The dominant emission mechanism in SL is electron-atom bremsstrahlung except at a lower bubble temperature than 2000 K, for which molecular emissions may be dominant.  相似文献   

12.
The generation of air microbubbles in microfluidic systems or in capillaries could be of great interest for transportation (single cell analysis, organite transportation) or for liquid compartmentation. The physicochemical characterization of air bubbles and a better understanding of the process leading to bubble generation during electrophoresis is also interesting in a theoretical point of view. In this work, the generation of microbubbles on hydrophobic Glaco™ coated capillaries has been studied in water-based electrolyte. Air bubbles were generated at the detection window and the required experimental parameters for microbubbles generation have been identified. Generated bubbles migrated against the electroosmotic flow, as would do strongly negatively charged solutes, under constant electric field. They have been characterized in terms of dimensions, electrophoretic mobility, and apparent charge.  相似文献   

13.
A simple method is described for determining the size of sonoluminescence bubbles generated by acoustic cavitation. The change in the intensity of sonoluminescence, from 4 ms pulses of 515 kHz ultrasound, as a function of the "off" time between acoustic pulses, is the basis of the method. The bubble size determined in water was in the range of 2.8-3.7 mum.  相似文献   

14.
The effect of alcohols on the initial growth of the multibubble sonoluminescence (MBSL) intensity in aqueous solutions has been investigated. With increasing concentrations of the alcohols, the number of pulses required to grow the MBSL intensity to a steady state (N(crit)) increases (relative to that of water) initially to a maximum for all the alcohols used in this study, followed by a decrease for methanol and ethanol. The cause of the initial increase in N(crit) is attributed to the inhibition of bubble coalescence in the system. This inhibition in bubble coalescence results in a population of bubbles with a smaller size range and thus a larger number of pulses is required to grow the bubbles to their sonoluminescing size range. It is suggested that the decrease in the N(crit) at higher alcohol concentrations may be caused by an increase in the bubble growth by rectified diffusion.  相似文献   

15.
A system of equations was obtained to describe the dynamics of bubbles in a cavitation cloud taking into account the interaction of pulsating bubbles involved in translational motion. The kinetics of cavitation bubble concentration changes, changes in the compressibility of the liquid, and phase transitions within a cavitation bubble and in the neighboring volume of the liquid were taken into account. The role played by bubble deformation in a cavitation cloud was considered. The Bernoulli pressure effect was shown to be negligible. The interaction of cavitation bubbles was a substantial factor that strongly influenced the dynamics of bubbles. It was suggested that there was at least one more mechanism that reduced sonoluminescence intensity from the multiple-bubble cavitation field, namely, a fairly high efficiency of sonoluminescence quenching could additionally be related to the arrival of a cumulative liquid stream at the central cavitation bubble region, where the concentration of active species was high. The dynamics of bubbles in the cavitation field is not only related to the expansion and compression of cavitation bubbles in the acoustic field, but also governed to a great extent by their interaction, translational motion, deformation, and the influence of cumulative streams penetrating the bubbles.  相似文献   

16.
The methyl radical recombination (MRR) method has been used for the measurement of cavitation bubble temperatures in aqueous solutions containing a select group of aromatic hydrocarbons as the source for the methyl radicals. The aromatic solutes used were phenol, aniline, m-cresol, and o-toluidine. The maximum bubble core temperatures determined using aniline and phenol were observed to be comparatively high with respect to other reported literature methods and also where the methyl radicals were produced from the cavitation thermolysis of simple aliphatic alcohols. It is concluded that the MRR method cannot be used with organic compounds that do not predominantly produce methyl radicals on the thermal decomposition of the hydrocarbon solutes within the hot core of a collapsing bubble.  相似文献   

17.
The effect of adding surface-active solutes to water being insonated at 515 kHz has been investigated by monitoring the acoustic emission from the solutions. At low concentrations (<3 mM), sodium dodecyl sulfate causes marked changes to the acoustic emission spectrum which can be interpreted in terms of preventing bubble coalescence and declustering of bubbles within a cavitating bubble cloud. By conducting experiments in the presence of background electrolytes and also using non-ionic surfactants, the importance of electrostatic effects has been revealed. The results provide further mechanistic evidence for the interpretation of the effect of surface-active solutes on acoustic cavitation and hence on the mechanism of sonochemistry. The work will be valuable to many researchers in allowing them to optimize reaction and process conditions in sonochemical systems.  相似文献   

18.
The influence of temperature on the yield of multibubble sonoluminescence of Tb3+ ions in an aqueous solution of TbCl3 was studied over the temperature range 5–55°C. The yield monotonically decreased as the temperature increased. The effective activation energy of this temperature quenching was larger than that of photoluminescence of terbium but smaller than for solvent sonoluminescence quenching. The result obtained was explained using the earlier suggested hypothesis of intrabubble f-f excitation of lanthanide ions in the sonolysis of aqueous solutions and two-stage (in the gas and liquid phases) deactivation of their long-lived (longer than 10?4 s) excited states in a bubble medium.  相似文献   

19.
Optical activity, since its discovery, has been a fascinating field, from the seemingly simple issues related to transfer of (chiral) information to its cosmic connections and the origin of life itself. There has been much progress made on both fronts which include the discovery of strong infrared circular polarization from dust scattering to the more down to earth knowledge of how chiral information is transferred to solutes by chiral additives, piezoelectricity and opalescent elastic networks. The progress made in the past few years and their implications for various aspects of chirality are discussed.  相似文献   

20.
In the present review, complexity in multibubble sonoluminescence (MBSL) is discussed. At relatively low ultrasonic frequency, a cavitation bubble is filled mostly with water vapor at relatively high acoustic amplitude which results in OH-line emission by chemiluminescence as well as emissions from weakly ionized plasma formed inside a bubble at the end of the violent bubble collapse. At relatively high ultrasonic frequency or at relatively low acoustic amplitude at relatively low ultrasonic frequency, a cavitation bubble is mostly filled with noncondensable gases such as air or argon at the end of the bubble collapse, which results in relatively high bubble temperature and light emissions from plasma formed inside a bubble. Ionization potential lowering for atoms and molecules occurs due to the extremely high density inside a bubble at the end of the violent bubble collapse, which is one of the main reasons for the plasma formation inside a bubble in addition to the high bubble temperature due to quasi-adiabatic compression of a bubble, where “quasi” means that appreciable thermal conduction takes place between the heated interior of a bubble and the surrounding liquid. Due to bubble–bubble interaction, liquid droplets enter bubbles at the bubble collapse, which results in sodium-line emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号