首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solute-cluster aggregation and particle fusion have recently been suggested as alternative routes to the classical mechanism of nucleation from solution. The role of both processes in the crystallization of an aqueous electrolyte under controlled salt addition is here elucidated by molecular dynamics simulation. The time scale of the simulation allows direct observation of the entire crystallization pathway, from early events in the prenucleation stage to the formation of a nanocrystal in equilibrium with concentrated solution. The precursor originates in a small amorphous aggregate stabilized by hydration forces. The core of the nucleus becomes crystalline over time and grows by coalescence of the amorphous phase deposited at the surface. Imperfections of ion packing during coalescence promote growth of two conjoint crystallites. A parameter of order and calculated cohesive energies reflect the increasing crystalline order and stress relief at the grain boundary. Cluster aggregation plays a major role both in the formation of the nucleus and in the early stages of postnucleation growth. The mechanism identified shares common features with nucleation of solids from the melt and of liquid droplets from the vapor.  相似文献   

2.
The energy of crystal nucleation from liquid phase was considered, with the following two stages taken into account: (1) the formation of metastable supercooled melt (solution), containing pre-nuclei with intermediate amorphous (quasicrystalline) structure, and (2) the transformation of amorphous clusters into solid crystalline nuclei having different structures. With growth of a nucleus the nucleation energy profile manifests 2–3 maxima corresponding to these stages, and the kinetics of the non-stationary nucleation has five characteristic variations.  相似文献   

3.
The crystallization and melting of three model polyethylenes of different chain structures have been studied. The polymers studied were a linear copolymer, hydrogenated poly(butadiene); a hydrogenated poly(butadiene)-atactic poly(propylene) diblock copolymer; and a three-arm star hydrogenated poly(butadiene). An important feature of this work was that the crystallizing portions of the copolymers all have the same molecular lengths.It was found that the overall crystallization rate decreases steadily from a linear to a diblock to the star copolymer. The differences in crystallization rates are related primarily to the activation energy for segmental transport. The non-crystallizable structure affects the segmental mobility to different degrees. An estimation of this effect is presented from the analysis of the overall crystallization rates using classical nucleation theory. In spite of thedifferences in their molecular structure, there are no major differences in the supermolecular structure of samples crystallized rapidly or slowly cooled.The melting process followed by DSC of the isothermally crystallized linear and star copolymers shows two endothermic peaks at intermediate undercoolings. The double melting is associated with a partitioning of crystallizable ethylene sequences during crystallization. The longest sequences are preferentially selected in the early stages of the crystallization. Single melting peaks are obtained for high and very low undercoolings for the linear and the star copolymers as well as for the diblock in the whole range of temperatures. The lack of the second, lower melting endotherm in the diblock could be associated with the influence in the crystallization process of the amorphous block in the microphase segregated melt.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
We investigate the microscopic melting process of a superheated argon solid using molecular dynamics simulations. We characterize the melting dynamics by following the temperature and time evolutions of liquid atoms and demonstrate the formation of a critical liquid nucleus via fluctuations and subsequent growth. The critical liquid nucleus size (about 120 atoms) obtained from our direct simulations is in accord with the prediction of the classical nucleation theory. The dynamic nucleation and growth of liquid also agree with the Johnson-Mehl-Avrami law, and the growth exponent n approximately 3 at the early stage followed by a substantial increase in n thereafter.  相似文献   

5.
A model for continuous (progressing) nucleation is developed. The model takes into account (1) the mixed kinetics of growth of every nucleus, (2) different degree of the diffusion influence on the growth rate of nuclei formed at different time instants after switching the current on, and (3) the presence of hemispherical diffusion simultaneously with the developing front of plane diffusion. Equations that are obtained for the time dependence of the current include, in addition to values of concentrations, diffusion coefficients, and individual parameters of metals, the exchange current density and the overvoltage. The nucleation in depleted-by-diffusion zones around the growing nuclei is considered. It is shown that the average nucleation retardation degree in such zones is time-independent. Therefore, at an arbitrary time instant, the entire surface may be represented as comprising areas with an ordinary nucleation rate (whose share diminishes) and areas with a lower (but constant) nucleation rate (whose share rises). At not-too-low overvoltages, the decrease in the nucleation rate is mainly due to the decrease in the surface concentration of ions-reactants. The overall number of clusters, calculated with the proposed model, is usually a few orders of magnitude than found by known models.  相似文献   

6.
Free energy, entropy, and the work of formation of condensation nuclei at 260 K in microcracks of β-AgI crystal structure at the initial stage of nucleation preceding crystallization are calculated by the Monte Carlo method. Unlike ideal crystal surface, nuclei in microcracks are thermodynamically stable and the barrier of free energy of nucleation is absent. Conditions of microcrack are favorable for the crystallization that qualitatively changes the regime and rate of nucleation. Stable size of nuclei at the humidity corresponding to natural atmosphere is sufficient for the filling of nanoscopic microcracks and the attainment of substrate surface. The probability of nucleus formation in microcracks by the fluctuation mechanism is incomparably higher than the probability of their formation on the defect-free surface. High crystallization ability of the particles of βAgI aerosol is ensured by multiple surface microcracks acting as active sites in combination with its complementary crystal structure. The efficiency of aerosols as stimulants of the nucleation of water vapor at negative Celsius temperatures is determined by the surface density and geometry of nanoscopic cracks and fissures on the particle surface.  相似文献   

7.
使用3,3 ′,4,4′-联苯四酸二酐( s-BPDA),1,3,-双(4-氨基苯氧基)苯(TPER)和苯酐(PA)反应合成了一种半结晶型聚酰亚胺.根据DSC记录的不同速率下降温所得到的结晶放热曲线,分别采用Jeziorny、Ozawa及奠志深提出的方法对其非等温结晶行为进行了研究.发现由Jeziorny方法分析得到的...  相似文献   

8.
A kinetic model of protein crystallization accounting for the nucleation stage, the growth and competition of solid particles and the formation of macroscopic patterns is developed. Different versions are considered corresponding successively, to a continuous one-dimensional crystallization reactor, a coarse grained two-box model and a model describing the evolution of the space averaged values of fluid and solid material. The analysis brings out the high multiplicity of the patterns. It provides information on their stability as well as on the kinetics of transitions between different states under the influence of the fluctuations.  相似文献   

9.
聚丁二酸丁二醇酯的自成核结晶行为   总被引:1,自引:0,他引:1  
利用差示扫描量热仪(DSC)研究了自成核对聚丁二酸丁二醇酯(PBS)的结晶行为的影响. 研究结果表明, PBS的有效自成核温度处理区间为118~120 ℃. PBS经自成核处理后结晶温度提高, 可以在100~118 ℃温度区间内迅速结晶. 同时, 研究了自成核处理后样品在100~104 ℃范围内的等温结晶行为、动力学过程及熔融行为. 结果表明, 随着等温结晶温度的升高, 结晶速率变慢, 熔融曲线出现多重熔融峰. Hoffman-Weeks方程分析结果表明, 自成核处理对PBS的平衡熔点没有影响. Avrami等温结晶动力学方程适合分析自成核处理样品的等温结晶动力学过程, 获得其动力学参数K与n, 其中n值偏大的原因在于自成核的样品结晶生长点增多. 根据Arrhenius方程, 计算获得PBS自成核处理后等温结晶活化能为-286 kJ/mol.  相似文献   

10.
The precrystallization stage of nucleation of the condensed phase in wedge-shaped microcracks on the surface of β-AgI crystal at 260 K is studied by the Monte Carlo method. The microcrack field has a strong polarizing effect on the nucleus inducing the electrostatic forces of repulsion of molecules inside the nucleus and their attraction to the surface of microcrack walls. The growth of the nucleus in the microcrack passes through a stage of compaction, which is absent for the nuclei growing on the ideal surface. Microcrack surfaces stimulate, on the one hand, the formation of multilayered structures already at the earlier stage of clusterization and, on the other hand, the decomposition of the nucleus into unbound clusters whose main elements are six-and four-membered cycles. The β-AgI substrate shifts the equilibrium in small clusters from cubic to hexagonal symmetry. The analysis of the formation conditions of the known modifications of crystal and amorphous ice renders improbable the emergence of amorphous forms on the surface at the temperature studied; however, this allows us to consider the crystallization of nuclei to ice XI in the presence of microcracks as the probable event.  相似文献   

11.
I demonstrate photochemically induced crystallization of metastable hen egg-white lysozyme solution by weak UV irradiation for several tens seconds. The most effective irradiation time range is 10–60 s, and in this range the enzyme activity is maintained. Intermediates, neutral radicals at tryptophan residual produced by one-photon absorption, enhance nucleation. When the intermediate is selectively excited by visible light, the intermediate is denatured. At that time the light-induced nucleation is inhibited. This result indicates the intermediate induces nucleation. The radical forms lysozyme dimer that is detected by an SDS-PAGE electrophoresis experiment. An addition of polyethylene glycol (PEG) greatly enhances light-induced nucleation. PEG affects to shorten the intermediate radical lifetime, which suggests that PEG assists to form dimer. We consider that the photochemical dimer behaves as smallest cluster to grow critical nucleus. The smallest cluster formation is the rate determining step in classical nucleation theory due to surface energy disadvantage. The photochemical dimer is formed by a covalent bond, and the nucleation is initiated from stable dimer. The nucleation enhancement is reasonably explained. The present researches results point out the development of a new method for controlling nucleation and growth that could be applied for structural genomics and pharmaceutical industry for instance.  相似文献   

12.
A novel "anisotropic aggregation" model is proposed to simulate nucleation and growth of polymer single crystals as functions of temperature and polymer concentration in dilute solutions. Prefolded chains in a dilute solution are assumed to aggregate at a seed nucleus with an anisotropic interaction by a reversible adsorption/desorption mechanism, with temperature, concentration, and seed size being the control variables. The Monte Carlo results of this model resolve the long-standing dilemma regarding the kinetic and thermal roughenings, by producing a rough-flat-rough transition in the crystal morphology with increasing temperature. It is found that the crystal growth rate varies nonlinearly with temperature and concentration without any marked transitions among any regimes of polymer crystallization kinetics. The induction time increases with decreasing the seed nucleus size, increasing temperature, or decreasing concentration. The apparent critical nucleus size is found to increase exponentially with increasing temperature or decreasing concentration, leading to a critical nucleus diagram composed in the temperature-concentration plane with three regions of different nucleation barriers: no growth, nucleation and growth, and spontaneous growth. Melting temperatures as functions of the crystal size, heating rate, and concentration are also reported. The present model, falling in the same category of small molecular crystallization with anisotropic interactions, captures most of the phenomenology of polymer crystallization in dilute solutions.  相似文献   

13.
尼龙6/蒙脱土纳米复合材料的等温结晶动力学研究   总被引:29,自引:0,他引:29  
用DSC法研究了熔体插层制备的尼龙6/蒙脱土纳米复合材料的等温结晶行为.结果表明,加入少量的蒙脱土可明显提高尼龙6的结晶速率,降低球晶径向生长的单位面积表面自由能.从Avrami方程和Hofman理论出发,得出蒙脱土纳米粒子的存在可明显改变尼龙6的结晶行为  相似文献   

14.
We report hybrid Monte Carlo molecular simulation results on the crystallization of aluminum from the supercooled liquid. We simulate the entire crystallization process at P=1 atm and at temperatures 20% and 15% below the melting temperature. We demonstrate that crystallization takes place according to the same mechanism for the two degrees of supercooling considered in this work. We show that both nucleation and growth proceed into a random mixing of the hexagonal close packed structure and of the face centered cubic (fcc) phase, with a predominance of the stable fcc form. The concentration of icosahedral (Ih)-like atoms in the supercooled liquid is found to remain constant throughout nucleation and growth, showing that Ih-like atoms do not play an active role in the crystallization process. We also find that the crystallization mechanism of aluminum differs from that observed for simple fluids. While nucleation of simple fluids first proceeds into the metastable body centered cubic (bcc) phase, the fraction of bcc-like atoms in aluminum crystallites always remains very low.  相似文献   

15.
The growing chain molecular dynamics (GCMD) simulation method, a new nonequilibrium molecular dynamics code, is proposed to simulate the polymer chain aggregation behavior during polymerization on a catalyst surface. We found that the growing chain crystallizes on the surface in two stages: the nucleation stage and the crystal growth stage. In the first part of the nucleation period, the short polymerizing chain first absorbs on the surface and can be in either an ordered or disordered structure. Still in the nucleation period, when the chain reaches a degree of polymerization, about 100 bonds, the chain folds into a stable nucleus on the substrate with 3-5 stems. In the crystal growth stage where the polymerization also proceeds, we observed a stem elongation process in combination with a chain folding process. In the stem elongation step, the number of stems in the nucleus remains constant, and all the stems expand together to a length of ca. 5-25 ns. In the subsequent chain folding step, the stem length decreases about 20 bonds within a period of ca. 0.1-0.5 ns. During chain growth, the elongation process and the folding process occur in an alternating and repeated fashion. The crystallization mechanism of the polymerizing chain was discussed.  相似文献   

16.
We report a numerical simulation of the rate of crystal nucleation of sodium chloride from its melt at moderate supercooling. In this regime nucleation is too slow to be studied with "brute force" molecular-dynamics simulations. The melting temperature of ("Tosi Fumi") NaCl is approximately 1060 K. We studied crystal nucleation at T = 800 and 825 K. We observe that the critical nucleus formed during the nucleation process has the crystal structure of bulk NaCl. Interestingly, the critical nucleus is clearly faceted, the nuclei have a cubical shape. We have computed the crystal-nucleation rate using two completely different approaches, one based on an estimate of the rate of diffusive crossing of the nucleation barrier, the other based on the forward flux sampling and transition interface sampling methods. We find that the two methods yield the same result within an order of magnitude. However, when we compare the extrapolated simulation data with the only available experimental results for NaCl nucleation, we observe a discrepancy of nearly five orders of magnitude. We discuss the possible causes for this discrepancy.  相似文献   

17.
In this study, several asymmetric poly(L‐lactide)/poly(D‐lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA with different structures into linear PLLA matrix. The effect of PDLA on rheological behavior, crystallization behavior, nucleation efficiency and spherulite growth of PLLA was investigated. Rheological results indicated that PLLA/PDLA blends showed solid‐like viscoelastic behavior at low temperature (<200°C), and the cross‐linking density of PLLA/PDLA melt at 180°C followed the order: PLLA/6PDLA > PLLA/L‐PDLA > PLLA/3PDLA > PLLA/4PDLA. No‐isotherm and isotherm crystallization results indicated that the crystallization capacity of PLLA/PDLA blends was strongly related to the PDLA structure, crystallization temperature and thermal treatment temperature. Furthermore, the dimension of crystal growth during isotherm crystallization presented the obvious dependent on the PDLA structure. The nucleation efficiency of sc‐crystallites in the blends and spherulite density during isothermal crystallization were also studied. Nucleation efficiency of sc‐crystallites in the PLLA/S‐PDLA blends showed the obvious dependent on thermal treatment temperature with respect to PLLA/L‐PDLA, and nucleation efficiency sc‐crystallites in the PLLA/S‐PDLA blends first decreased and then increased as the thermal treatment temperature increased. Spherulite density of PLLA/PDLA blends was also related to thermal treatment temperature and the PDLA structure. This study has discussed the temperature dependence of the stereocomplex networks between PLLA and PDLA with different structure, and then its consequential influence on rheology and crystallization capacity of PLLA, which would provide the theoretical direction for PLA processing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The homogeneous crystallization of liquid nickel models containing 2048 particles in the basic cube was studied by molecular dynamics. The potential of the embedded atom method was used. The models were constructed under zero pressure or constant volume conditions. The state of the structure was evaluated from the number of atoms with the coordination number 12. The concentration of such atoms in the stable and metastable liquids increased as the temperature decreased. At the selected potential of the embedded atom model, the equilibrium crystallization temperature at zero pressure was 1415 K. The existence of the lower boundary of liquid nickel supercooling was established. The liquid crystallized under isothermal conditions by the cluster mechanism with the formation of a predominantly closely packed structure below 850 K at zero pressure and below 1075 K at a constant volume (6.588 cm3/mol). The mechanism of nucleation was different from that accepted in classic nucleation theory. Nucleation was accompanied by an increase in the number of atoms with the coordination number 12, the formation of bound groups (12-clusters) from these atoms, and the growth of these groups, as with the crystallization of rubidium under strong supercooling conditions and coagulation of impurities from supersaturated solutions. At the initial stage, bound groups had a very loose structure and contained a large number of atoms with coordination numbers other than 12; the linear size of the largest group rapidly approximated the basic cube size. These atoms played a leading role in crystallization and activated the transfer of atoms in bound groups having different coordination numbers into the coordination state corresponding to a closely packed lattice. An important role in the formation of 12-clusters of the threshold (critical) size played cluster size fluctuations, which were especially strong close to the lower boundary of liquid supercooling.  相似文献   

19.
The new fluctuation‐assisted mechanism for nucleation and crystallization in the isotactic polypropylene/poly(ethylene‐co‐octene) alloy has been studied. We found that the liquid–liquid phase separation (LLPS) had a dominant influence on the crystallization kinetics through the nucleation process. After LLPS, the nucleation of crystallization mainly occurred at the interface of the phase‐separated domains. It is because that the concentration fluctuations of the LLPS induced the motion of polymer chains and possibly some segmental alignment and/or orientation in the concentration gradient regions through interdiffusion, which could assist the formation of nuclei for crystallization. In other words, the usual nucleation energy barrier could be overcome (or at least partially) by the concentration fluctuation growth of LLPS in the unstable regions. This could be viewed as a new kind of heterogeneous nucleation and could be an addition to the regular nucleation and growth mechanism for crystallization. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 166–172, 2009  相似文献   

20.
通过化学分析、SEM显微分析技术结合RosinRamiler概率统计理论从介观层次研究Na5P3O10CaOH2CO2H2O体系纳米CaCO3的合成反应及其成核和生长过程。结果表明Na5P3O10对CaOH2的碳化反应具有抑制作用。随着Na5P3O10的增加体系中CaCO3的成核速率B0逐渐增大。在Na5P3O10=0ppm时CaCO3结晶的生长由长程扩散和凝聚生长控制Na5P3O10=380.4760.9ppm时前期受短程扩散和界面反应控制、后期受长程扩散控制。Na5P3O10的存在抑制了纳米CaCO3的晶体生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号