共查询到20条相似文献,搜索用时 0 毫秒
1.
Taguchi T Zhang XT Sutanto I Tokuhiro K Rao TN Watanabe H Nakamori T Uragami M Fujishima A 《Chemical communications (Cambridge, England)》2003,(19):2480-2481
An ultrathin overlayer of MgO on TiO2 is shown to drastically improve the stability of solid-state dye-sensitized solar cell using CuI as a hole conductor in addition to solar energy conversion efficiency. 相似文献
2.
Sheng-Qiang Fan Duckhyun Kim Jeum-Jong Kim Dong Woon Jung Sang Ook Kang Jaejung Ko 《Electrochemistry communications》2009,11(6):1337-1339
With 4.2 nm quantum-dots (QDs) as seeds on TiO2 film, a highly efficient TiO2 photoelectrode was prepared by a seed-growing process using chemical bath deposition technique, followed by a covering process with ZnS layer, and a post-sintering process at 400 °C. The assembled solar cells presented IPCE peak values of 73% and power conversion efficiency of 3.21% under AM 1.5 G irradiation. 相似文献
3.
Surface modification plays a crucial role in improving the efficiency of dye-sensitized solar cells (DSSCs), but the reported surface treatments are in general superior to the untreated TiO(2) but inferior to the typical TiCl(4)-treated TiO(2) in terms of solar cell performance. This work demonstrates a two-step treatment of the nanoporous titania surface with strontium acetate [Sr(OAc)(2)] and TiCl(4) in order, each step followed by sintering. An electronically insulating layer of SrCO(3) is formed on the TiO(2) surface via the Sr(OAc)(2) treatment and then a fresh TiO(2) layer is deposited on top of the SrCO(3) layer via the TiCl(4) treatment, corresponding to a double layer of Sr(OAc)(2)/TiO(2) coated on the TiO(2) surface. As compared to the typical TiCl(4)-treated DSSC, the Sr(OAc)(2)-TiCl(4) treated DSSC improves short-circuit photocurrent (J(sc)) by 17%, open-circuit photovoltage (V(oc)) by 2%, and power conversion efficiency by 20%. These results indicate that the Sr(OAc)(2)-TiCl(4) treatment is better than the often used TiCl(4) treatment for fabrication of efficient DSSCs. Charge density at open circuit and controlled intensity modulated photocurrent/photovoltage spectroscopy reveal that the two electrodes show almost same conduction band level but different electron diffusion coefficient and charge recombination rate constant. Owing to the blocking effect of the SrCO(3) layer on electron recombination with I(3)(-) ions, the charge recombination rate constant of the Sr(OAc)(2)-TiCl(4) treated DSSC is half that of the TiCl(4)-treated DSSC, accounting well for the difference of their V(oc). The improved J(sc) is also attributed to the middle SrCO(3) layer, which increases dye adsorption and may improve charge separation efficiency due to the blocking effect of SrCO(3) on charge recombination. 相似文献
4.
Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides 总被引:2,自引:0,他引:2
The performance of dye-sensitized solar cells (DSCs) was compared before and after processing the TiO(2) electrodes by minute-order electrochemical reactions with metal nitrates, where the metals were Mg, Zn, Al, and La, in 2-propanol. An overcoating of metal hydroxide was formed without the need for a sintering process, and magnesium hydroxide was found to give the largest improvement in photovoltage, fill factor, and eventually overall conversion efficiency of the DSCs. To analyze the nature of the improvement, the diffusion coefficient (D) and electron lifetime (tau) were determined. While little influence of overcoating on D was seen, a correlation between the increase in tau and V(oc) was observed for the metals examined here. The remarkable improvement in the electron lifetime of the DSCs suggests that an overcoating with magnesium hydroxide species function as the blocking layers at the fluorine-doped tin oxide and TiO(2) interfaces, thus contributing to the suppression of electron leakage, i.e., recombination processes between unidirectional transporting electrons and poly-iodides such as tri-iodide in the processed TiO(2) photoelectrode systems. The increase in V(oc) can be explained by the increased electron density caused by the increase in electron lifetime. 相似文献
5.
Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell 总被引:2,自引:0,他引:2
Lee S Kim JY Youn SH Park M Hong KS Jung HS Lee JK Shin H 《Langmuir : the ACS journal of surfaces and colloids》2007,23(23):11907-11910
A nanoporous CaCO3 overlayer-coated TiO2 thick film was prepared by the topotactic thermal decomposition of Ca(OH)2, and its performance as an electrode of a dye-sensitized solar cell was investigated. As compared to bare TiO2, nanoporous CaCO3-coated TiO2 provided higher specific surface area and, subsequently, a larger amount of dye adsorption; this in turn increased short-circuit current (Jsc). Furthermore, the CaCO3 coating demonstrated increased impedance at the TiO2/dye/electrolyte interface and increased the lifetime of the photoelectrons, indicating the improved retardation of the back electron transfer, which increases Jsc, open-circuit voltage (Voc), and fill factor (ff). Thereby, the energy conversion efficiency (eta) of the solar cell improved from 7.8 to 9.7% (an improvement of 24.4%) as the nanoporous CaCO3 layer was coated onto TiO2 thick films. 相似文献
6.
Nath NC Sarker S Ahammad AJ Lee JJ 《Physical chemistry chemical physics : PCCP》2012,14(13):4333-4338
Three electrode structures with different spatial arrangements of carbon nanotubes (CNTs) in the mesoporous TiO(2) layer were employed in dye-sensitized solar cells to study the effect of surface states at the interface formed by the incorporation of CNTs. It was found that the decay of open circuit voltage (V(oc)) was significantly minimized by avoiding the direct contact of nanotubes to the conducting substrate by introducing a thin buffer layer of TiO(2) while maintaining the superior electron collection efficiency from the incorporation of nanotubes. 相似文献
7.
Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO(2) photoelectrodes 总被引:2,自引:0,他引:2
Yamaguchi T Tobe N Matsumoto D Arakawa H 《Chemical communications (Cambridge, England)》2007,(45):4767-4769
The efficiency of a plastic-substrate dye-sensitized solar cell was much improved by a new method consisting of a press method without heat treatment, light confinement effect of TiO(2) film and water-based TiO(2) paste; this device shows the highest light-to-electrical energy conversion efficiency based on plastic-substrate dye-sensitized solar cells, 7.4% under 100 mW cm(-2) (1 sun) AM1.5 illumination. 相似文献
8.
Hočevar Mateja Berginc Marko Topič Marko Krašovec Urša Opara 《Journal of Sol-Gel Science and Technology》2010,53(3):647-654
A titanium oxide layer used in a dye-sensitized solar cell (DSSC) has to meet two opponent properties to enable high conversion
efficiency: a large surface area (for high dye loading) and good connection between TiO2 grains (for efficient extraction of electrons toward the front contact). In order to meet a trade-off between these criteria
a preparation method for TiO2 paste formulation based on Pechini sol–gel method and commercial nanocrystalline TiO2 powder has been developed. A series of TiO2 pastes with different molar ratios between titanium isopropoxide, citric acid and ethylene glycol (1:X:4X) in the paste have been examined. The structure and morphology as well as cross-cut tests of deposited and sintered TiO2 layers have been analyzed. Results reveal that the paste with X = 8 exhibits the best properties, resulting in an overall conversion efficiency of DSSC under standard test conditions (100 mW/cm2, 25 °C, AM 1.5G) up to 6.6% for ionic liquid based electrolyte. 相似文献
9.
Nair AS Jose R Shengyuan Y Ramakrishna S 《Journal of colloid and interface science》2011,353(1):39-45
Development of highly efficient dye-sensitized solar cells (DSSCs) with good photovoltaic parameters is an active research area of current global interest. In this article, we provide a simple recipe for the fabrication of electrospun TiO(2) nanorod-based efficient dye-sensitized solar cell using a Pechini-type sol. The Pechini-type sol of TiO(2) nanofibers produces a highly porous and compact layer of TiO(2) upon doctor-blading and sintering without the need for an adhesion and scattering layers or TiCl(4) treatment. The best nanofiber DSSCs with an area of ~0.28 cm(2) shows an efficiency of ~4.2% under standard test conditions (100 mW/cm(2), 25°C and AM1.5 G) and an incident photon-to-electron conversion efficiency (IPCE) of ~50%. Impedance measurements show lower charge transfer resistance that improved the fill factor. We believe that simple approaches such as the present one to develop nanofiber DSSCs would open up enormous possibilities in effective harvesting of solar energy for commercial applications, considering the fact that electrospinning is a cost-effective method for the mass scale production of nanofibers and nanorods. 相似文献
10.
Ethanol-soluble amphiphilic TiO(2) nanoparticles (NPs) of average diameter ~9 nm were synthesized, and an α-terpineol-based TiO(2) paste was readily prepared from them in comparatively few steps. When used for fabrication of photoelectrodes for dye-sensitized solar cells (DSSCs), the paste yielded highly transparent films and possessing greater-than-typical, thickness-normalized surface areas. These film properties enabled the corresponding DSSCs to produce high photocurrent densities (17.7 mA cm(-2)) and a comparatively high overall light-to-electrical energy conversion efficiency (9.6%) when deployed with the well-known ruthenium-based molecular dye, N719. These efficiencies are about ~1.4 times greater than those obtained from DSSCs containing photoelectrodes derived from a standard commercial source of TiO(2) paste. 相似文献
11.
Yoshikazu Suzuki Supachai Ngamsinlapasathian Ryuhei Yoshida Susumu Yoshikawa 《Central European Journal of Chemistry》2006,4(3):476-488
Partially nanowire-structured TiO2 was prepared by a hydrothermal processing followed by calcination in air. The hydrogen titanate powder as-synthesized was
calcined at 300 °C for 4 h to obtain the partially nanowire-structured TiO2. A dye-sensitized solar cell (DSC) with a film thickness of 5.6 μm, fabricated using the partially nanowire-structured TiO2 showed better performance than using a fully nanowire-structured TiO2 or a conventional equi-axed TiO2 nanopowder. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF) and the overall efficiency (η) are 11.9 mA/cm2, 0.754 V, 0.673 and 6.01 %, respectively. The effects of one-dimensional nanostructure and electron expressway concept are
discussed. 相似文献
12.
Jung HS Lee JK Nastasi M Lee SW Kim JY Park JS Hong KS Shin H 《Langmuir : the ACS journal of surfaces and colloids》2005,21(23):10332-10335
Sol-gel-derived Mg(OH)(2) gel was coated onto TiO(2) nanoparticles, and the subsequent thermal topotactic decomposition of the gel formed a highly nanoporous MgO crystalline coating. The specific surface area of the electrode that was prepared from the core-shell-structured TiO(2) nanoparticles significantly increased compared with that of the uncoated TiO(2) electrode. The increase in the specific surface area of the MgO-coated TiO(2) electrode was attributed to the highly nanoporous MgO coating layer that resulted from the topotactic reaction. Dye adsorption behavior and solar cell performance were significantly enhanced by employing the MgO-coated TiO(2) electrode. Optimized coating of a MgO layer on TiO(2) nanoparticles enhanced the energy conversion efficiency as much as 45% compared to that of the uncoated TiO(2) electrode. This indicates that controlling the extrinsic parameters such as the specific surface area is very important to improve the energy conversion efficiency of TiO(2)-based solar cells. 相似文献
13.
《Electrochemistry communications》2007,9(3):382-385
Crack-free thick ordered mesoporous TiO2 films with excellent optical quality have been synthesized by combination of “Doctor Blade” technique and a two-step evaporation induced self-assembly (EISA) method. By employing the as-synthesized mesoporous film with the thickness of 7 μm as the photoanode in dye-sensitized solar cell (DSC), a solar conversion efficiency of 6.53% has been obtained at 30 mW cm−2 light intensity. 相似文献
14.
Se Hee Jang Yong Joo Kim Hark Jin Kim Wan In Lee 《Electrochemistry communications》2010,12(10):1283-1286
300-nm-sized nanoporous TiO2 spheres (SPs), blended with 25-nm-sized nanoparticles, were successfully applied to low-temperature fabrication of TiO2 electrodes for dye-sensitized solar cell (DSC). The introduction of SPs increased the adsorbed amount dye molecules, induced the efficient transport of photo-injected electrons through TiO2 layer, and offered an extended light-scattering efficiency in the long wavelength region. Furthermore, the adhesion of TiO2 layer to the FTO substrate was considerably improved. As a result, the photovoltaic conversion efficiency (η) of DSC processed at 140 °C was enhanced from 4.4% to 6.3%. 相似文献
15.
Yun TK Park SS Kim D Shim JH Bae JY Huh S Won YS 《Dalton transactions (Cambridge, England : 2003)》2012,41(4):1284-1288
The effect of the rutile content on the photovoltaic performance of dye-sensitized solar cells (DSSCs) composed of mixed-phase TiO(2) photoelectrode has been investigated. The mixed-phase TiO(2) particles with varied amounts of rutile, relative to anatase phase, are synthesized by an in situ method where the concentration of sulfate ion is used as a phase-controlling parameter in the formation of TiO(2) using TiCl(4) hydrolysis. The surface area (S(BET)) varies from 33 (pure rutile) to 165 (pure anatase) m(2) g(-1). Generally, both the current density (J(sc)) and photo-conversion efficiency (η) decrease as the rutile content increases. The incorporation of rod-shaped rutile particles causes low uptake of dye due to the reduced surface area, as well as slow electron transport in less efficiently-stacked structure. However, maximum J(sc) (14.63 mA cm(-2)) and η (8.69%) appear when relatively low rutile content (16%) is employed. The reported synergistic effect by the efficient interparticle electron transport from rutile to anatase seems to overbalance the decrease of surface area when small amount of rutile particles is incorporated. 相似文献
16.
Nair AS Peining Z Babu VJ Shengyuan Y Ramakrishna S 《Physical chemistry chemical physics : PCCP》2011,13(48):21248-21261
The review presented below summarizes the up-to-date research efforts in using one-dimensional TiO(2) nanomaterials in dye-sensitized solar cells. A brief account of the methods of synthesis of the anisotropic nanomaterials as well as their photovoltaic performance in DSCs was summarily presented. The usefulness of the materials as scattering layer in DSCs was also surveyed. 相似文献
17.
Room temperature fabrication of porous ZnO photoelectrodes for flexible dye-sensitized solar cells 总被引:1,自引:0,他引:1
Liu X Luo Y Li H Fan Y Yu Z Lin Y Chen L Meng Q 《Chemical communications (Cambridge, England)》2007,(27):2847-2849
We fabricated ZnO photoelectrodes at room temperature by doctor-blading ZnO gel; the adequate interparticle connection and the effective ammonia activation process improved the flexible DSC's efficiency to 3.8% (under 100 mW cm(-2)). 相似文献
18.
Min Wu Z. H. Yang Y. H. Jiang J. J. Zhang S. Q. Liu Y. M. Sun 《Journal of Solid State Electrochemistry》2010,14(5):857-863
A simple electrodepositing method was proposed for fabricating a uniform, tight, and close-packed TiO2 nanocrystalline film on the ITO substrate. The electrode and dye-sensitized solar cell (DSSC) with electrodeposited TiO2 layer were characterized by scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy.
The phthalocyanin dye, zinc tetra-carboxyl phthalocyanin complex, was used as a model dye to evaluate the influence of close-packed
TiO2 blocking layer on the photocurrent–voltage property. On the electrodeposition, the close-packed TiO2 layer could effectively inhibit the recombination of charges, and therefore improve the performances of the corresponding
cells. The effects of film thickness on light transmittance and photocurrent density of the corresponding cell were also demonstrated.
The optimum film thickness was found to be approximately 400 nm. At the optimum thickness, the photocurrent density greatly
increased comparing with that of the screen printing TiO2 film. These results imply that our proposition was a potential and feasible method for the fabrication of DSSC practically. 相似文献
19.
Judy N. Hart David Menzies Yi-Bing Cheng George P. Simon Leone Spiccia 《Journal of Sol-Gel Science and Technology》2006,40(1):45-54
The microwave heat treatment of blocking layers for dye-sensitized solar cells has been investigated. It has been found that
the solar cell efficiencies achieved with microwave heating were considerably higher than those achieved with conventional
heating at low temperatures (100°C). This was attributed to microwave heating providing better sintering of the blocking layer
and better interfacial contact between the substrate and the TiO2 layers. These results are promising with regard to the application of microwave heating to the production of dye-sensitized
solar cells on flexible polymer substrates. 相似文献
20.
采用模板辅助法制备了SnO2/TiO2复合空心球,样品直径为1.5~4.0μm,比表面积达到了92.9 m^2·g^-1,复合空心球表现出优越的光散射性能.以这种复合空心球作为染料敏化太阳能电池的光阳极,电池的光电转换效率可达到7.72%,高于SnO2微米球(2.70%)和TiO2微米球(6.26%).此外,以锐钛矿型TiO2纳米晶作为底层,SnO2/TiO2复合空心球作为光散射层制备的双层结构光阳极,电池光电转换效率进一步提升至8.43%. 相似文献