首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The electrochemical responses of tannic acid have been obtained at porous pseudo-carbon paste electrode (PPCPE), polypyrrole modified carbon paste electrode (PCPE), SBA-15 modified CPE (SBA-MCPE) and carbon paste electrode (CPE) under same conditions, respectively. The results show that the sensitivity of PPCPE is the highest among all the checked electrodes. The detection limit at PPCPE is 0.01 μM, which is about 10 times lower than that at CPE and is about 5 times lower than that at PCPE or SBA-MCPE. The developed electrode PPCPE possesses a few obvious advantages and no binding reagents are needed. The surface area of PPCPE is 59.26 m2 g−1 with pores ranging from 2 to 5 μm in diameter. The PPCPE is easy to preserve and has good reusability, which affords a nice electrochemical platform for detecting tannic acid.  相似文献   

2.
El-Desoky HS  Ghoneim MM 《Talanta》2011,84(1):223-234
Silymarin is one of the most powerful natural substances that have the ability to protect and rebuild the liver cells damaged by alcohol and other toxic substances. Silymarin showed two irreversible anodic peaks in buffered solutions (pH 2.5-8.0) at either the bare carbon paste electrode or the montmorillonite-Ca modified carbon paste one. These two peaks have been attributed to oxidation of the two phenolic OH groups at positions C-20 and C-7 of silymarin molecule. A square-wave adsorptive anodic stripping voltammetry method was optimized for determination of silymarin utilizing the bare and the modified carbon paste electrodes. The method was fully validated and successfully applied for the determination of silymarin in commercial formulations and human serum without prior extraction utilizing both carbon paste electrodes. Limits of quantitation of 1 × 10−7 and 7 × 10−9 mol L−1 silymarin have been achieved in bulk form or in formulations while 2 × 10−7 and 8 × 10−9 mol L−1 silymarin were achieved in spiked human serum utilizing the bare carbon paste electrode and the modified one, respectively. The two electrodes exhibited excellent selectivity towards silymarin even in the presence of 102to 103-fold excess of its co-formulated drugs, common excipients, and common metal ions. The pharmacokinetic parameters of silymarin in plasma of healthy human volunteers were estimated following the administration of a single oral dose of 120 mg silymarin utilizing the modified carbon paste electrode. The estimated pharmacokinetic parameters were favorably compared with those reported in literature.  相似文献   

3.
碳糊电极和化学修饰碳糊电极的制备及性能综述   总被引:3,自引:0,他引:3  
碳糊电极在电化学研究中起着非常重要的作用.从电极材料选用和修饰剂选择方面综述了碳糊电极和化学修饰碳糊电极制备的几种方法,分析了碳糊电极和化学修饰碳糊电极制备技术存在的主要问题及其原因,评价了碳糊电极和化学修饰碳糊电极的表征技术、性能以及影响电极性能的因素.概括了近年来本课题组在碳糊电极研究中的一些结果.  相似文献   

4.
四氰基醌二甲烷修饰碳糊电极电催化氧化测定抗坏血酸   总被引:11,自引:0,他引:11  
刘宝红  陈蕾 《分析化学》1995,23(2):206-210
本用四氰基醌二甲烷作价体,制成TCNQ-碳糊电极,研究了该电极的性能。电极对水溶液中的抗坏血酸在较宽的pH和浓度范围内均有良好的电催化氧化作用,电极的稳定性良好,在AH2浓度5.0×10^-5-5.0×10-2mol/L范围内,催化峰电流与AH2浓度呈线性关系,响应时间小于30s.  相似文献   

5.
Rogers KR  Becker JY  Cembrano J  Chough SH 《Talanta》2001,54(6):1059-1065
The systematic study of the effect of binder viscosity on the sensitivity of a tyrosinase-based carbon paste electrode (CPE) biosensor for phenol and catechol is reported. Silicon oil binders with similar (polydimethylsiloxane) chemical composition were used to represent a wide range of viscosities (10–60 000 mPa s−1 at 25°C) while minimizing polarity effects. The highest response for both phenol and catechol was achieved using a silicon oil binder of intermediate viscosity (100 mPa s−1). The binder viscosity showed no appreciable effect on the direct oxidation of phenol and catechol using a plain CPE, suggesting the involvement of diffusion kinetics in the binder matrix for the enzyme-based CPE. The effect of the relative binder concentration in the carbon paste was measured over the range of 30–70%. Optimal results were obtained using 40% silicon oil. For comparison of the viscosity effects observed with the carbon paste electrode (CPE) containing silicon oil, other low and high viscosity mineral oils and paraffin waxes were also examined.  相似文献   

6.
A new carbon paste electrode modified with tetramethyl thiuram disulfide is prepared to use as copper potentiometric sensor in batch and flow analysis. The influence of pH and carbon paste composition on the potentiometric response is studied. The principal parameters of the flow system are optimized and the detection limits and the selectivity coefficients of the potentiometric sensor are calculated for static and flow mode. In both cases, the sensor shows high selectivity to copper ions but in flow analysis this selectivity is higher. The obtained detection limits are 4.6 × 10−8 M for batch measurements and 2.0 × 10−7 M for on-line analysis. The potentiometric sensor is applied to copper(II) determination in real samples in static and flow measurements. In both analysis modes, successful results are obtained.  相似文献   

7.
A new hemoglobin (Hb) and carbon nanotube (CNT) modified carbon paste electrode was fabricated by simply mixing the Hb, CNT with carbon powder and liquid paraffin homogeneously. To prevent the leakage of Hb from the electrode surface, a Nafion film was further applied on the surface of the Hb‐CNT composite paste electrode. The modified electrode was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Direct electrochemistry of hemoglobin in this paste electrode was easily achieved and a pair of well‐defined quasi‐reversible redox peaks of a heme Fe(III)/Fe(II) couple appeared with a formal potential (E0′) of ?0.441 V (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical behaviors of Hb in the composite electrode were carefully studied. The fabricated modified bioelectrode showed good electrocatalytic ability for reduction of H2O2 and trichloroacetic acid (TCA), which shows potential applications in third generation biosensors.  相似文献   

8.
The electrochemical behaviour of carbon paste electrodes prepared using nanocarbon and mineral oil was investigated and the results contrasted with different carbon and carbon pastes electrodes. The composition of carbon paste was studied by performing cyclic voltammetry performed in 0.1 M KCl solution in the presence of 4.0 mM Ru(NH3)6Cl3, a well‐characterized redox system commonly used to test the electrode behaviour. After optimisation of the paste composition, the sensors chosen were tested for the analysis and characterization of three different systems: Ru(NH3)63+/2+, FcCH2OH/FcCH2OH+ and acetaminophen. The ability to obtain high quality voltammetry from the nanocarbon electrode was demonstrated and simulation of the voltammetry allowed the extraction of electrode kinetic parameters with high precision.  相似文献   

9.
王炎英  彭丽  詹国庆 《应用化学》2010,27(10):1204-1208
以H2C2O4·2H2O和Zn(Ac)2·2H2O为前驱体制备纳米ZnO粉体,用透射电子显微镜、X射线衍射光谱表征了其形貌及晶体结构,并将其用于制备纳米ZnO-碳糊电极,采用循环伏安法和微分脉冲伏安法研究了氯化血红素在电极上的电化学行为。 与商品ZnO颗粒-碳糊电极和裸碳糊电极相比,氯化血红素在纳米ZnO-碳糊电极上的还原峰峰电位正移,还原峰峰电流明显增加,表现出明显电催化性能。 实验表明,在pH=9.18磷酸盐缓冲液中,-0.30 V富集30 s后,氯化血红素在-0.440 V处有1个灵敏的还原峰,可用于氯化血红素的电化学分析。 在优化条件下,该还原峰峰电流与氯化血红素浓度在3.1×10-9~3.1×10-7 mol/L内有线性关系,检出限为1.53×10-9 mol/L(S/N=3)。 将该修饰电极用于红桃K生血剂中氯化血红素测定,结果满意。  相似文献   

10.
《Analytical letters》2012,45(13):2402-2411
Abstract

Porous pseudo-carbon paste electrode (PPCPE) as a novel high-sensitive electrochemical biosensor was fabricated by mixing polymethyl methacrylate (PMMA) microspheres for use as the template, graphite powders for the filler, and pyrrole as the precursor of the polymer which acted as the paste. After the polymerization of pyrrole catalyzed by Fe3+, the PMMA microspheres were removed to form PPCPE. The pore size was determined by SEM observations, with diameters ranging from 2 to 5 µm. The anodic stripping voltammetry response of DNA indicated that the adsorption of oligonucleotide on PPCPE was enhanced. The PPCPE was easy to preserve and had a good reusability in comparison with that of a pure carbon paste electrode (CPE) and a carbon nanotube-modified carbon paste electrode (CNTPE). The detection limits of guanine and adenine were 20 nM and 8 nM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号