首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A boundary of existence of solid solutions in the Li8−2x Mg x ZrO6 system is found to be 7 mol % MgO. The transport properties of Li8 − 2x Mg x ZrO6 solid solutions (the electronic component of total conductivity, the temperature and concentration dependences of conductivity and activation energy) are studied. It is supposed that, for Li8ZrO6 phase and solid solution based on it, an abrupt change of conductivity in the temperature range from 663 to 713 K is caused by the transition of electrolyte into the superionic state.  相似文献   

2.
The successful launch of solid-state batteries relies on the discovery of solid electrolytes with remarkably high ionic conductivity. Extensive efforts have identified several important superionic conductors (SICs) and broadened our understanding of their superionic conductivity. Herein, we propose a new design strategy to facilitate ionic conduction in SICs by planting immobile repulsion centers. Our ab initio molecular dynamics simulations on the model system Na11Sn2PS12 demonstrate that the sodium ionic conductivity can be increased by approximately one order of magnitude by simply doping large Cs ions as repulsion centers in the characteristic vacant site of Na11Sn2PS12. Planting immobile repulsion centers locally induces the formation of high-energy sites, leading to a fast track for ionic conduction owing to the unique interactions among mobile ions in SICs. Seemingly non-intuitive approaches tailor the ionic diffusion by exploiting these immobile repulsion centers.  相似文献   

3.
CeO2-based solid solutions with a fluorite structure are promising materials as electrolytes of medium-temperature electrochemical devices: electrolytic cells, oxygen sensors, and solid oxide fuel cells. In this work, studies are presented of the effect of the dopant cation radius and its concentration on the physico-chemical properties of the Ce1 − x Ln x O2 − δ solid solutions (x = 0–0.20; Ln = La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb) and also of multicomponent solid solutions of Ce1 − x Ln x/2Ln′ x/2O2 − δ (x = 0–0.20; Ln = Sm, La, Gd and Ln′ = Dy, Nd, Y) and Ce1 − xy Sm x M y O2 − δ (M = Ca, Sr, Ba) obtained using the solid-phase synthesis technique. Electric properties of the samples were studied in the temperature range of 623–1173 K and in the oxygen partial pressure range of 0.01–10−22 MPa. The values of oxygen critical pressure ( pO2 * )\left( {p_{O_2 }^* } \right) are presented, at which the ionic and electron conductivity values are equal. The values were calculated on the basis of experimental dependences at 1023 K at the assumption that the ionic conductivity value is determined only by the dopant concentration and its effective ionic radius and is independent of the oxygen partial pressure.  相似文献   

4.
The influence of the nature of MnOm and treatment temperature of zirconia-based systems MnOm−ZrO2 (M=Ca, Ba, Sm, Yb) of approximately equimolar composition on their phase composition and dispersity has been studied. The samples are shown to contain solid solutions based on cubic ZrO2. Besides, CaZrO3 perovskite is present in the CaO−ZrO2 system, and a solid solution based on Sm2O3 is present in the Sm2O3−ZrO2 system. The particle sizes in the corresponding solid solutions vary from 25 to 150 ?, while in the perovskite phase they are in the 300–500 ? range, with the treatment temperature increasing from 623 to 1273 K.  相似文献   

5.
Solid ionic conductors, also called solid electrolytes, transport electric current by means of ions. The best known examples of these usually crystalline compounds include doped ZrO2, as well as AgI, β-Al2O3, and CaF2. Ionic conduction in solid electrolytes reaches its maximum value if a partial lattice of a solid compound undergoes transition at elevated temperature to a quasimolten state. The ionic conductivity in such solid compounds is then as high as in molten salts. Solid electrolytes have found many scientific and technological applications; thus, they can be used to study thermodynamic and kinetic problems, and to build fuel cells, batteries, sensors, and chemotronic components.  相似文献   

6.
The results of our studies of solid solutions of the general composition Bi4V2 − x Fe x/2Cr x/2O11 − δ are presented. The crystal-chemical parameters of different polymorphic modifications of BIMEVOX were determined. The particle size distribution was determined by laser diffraction and optical microscopy. The surface of sintered preforms was studied by scanning electron microscopy. The conductivity of sintered poly-crystalline samples as a function of temperature and composition was studied by impedance spectroscopy. The conductivity was depends on the procedure for the synthesis of solid solutions. The most promising compositions were revealed.  相似文献   

7.
CaZrO3 films are studied that were obtained on ceramic supports of solid electrolyte of ZrO2 + 9 mol % Y2O3 (YSZ, yttria stabilized zirconia) from alcohol solutions of zirconium oxychloride and calcium nitrate using the method of dipping with the following drying and annealing. The thickness and morphology of films depend on the concentration of the film-forming solution. Vickers microhardness of the CaZrO3 films was determined. The impedance spectroscopy method was used to study conductivity of films at the temperature of 400–600°C by comparison of impedance spectra of clean supports and supports with a film coating.  相似文献   

8.
Ce1‐xNdxO2‐δ (x = 0.05–0.55) solid solutions prepared by sol‐gel route were crystallized in a cubic fluorite structure. The solid limit was determined to be as high as x = 0.45. Raman spectra of the solid solutions with lower composition exhibited only one band, which was assigned to F2g mode. Increasing composition produced broad and asymmetric F2g mode with an appearance of low frequency tail. The new broad peak observed at higher frequency side of the F2g mode associated with the oxygen vacancy in the lattice. The impedance spectra of the solid solutions showed definitely ionic conduction, and Ce0.80Nd0.20O2‐δ solid solution possessed a maximum conductivity. At 500 °C, the conductivity and activation energy were 2.65 × 10?3S/cm and 0.82 eV, respectively.  相似文献   

9.
New solid electrolytes with a high conductivity by K+ ions in the K1 − 2x Sr x GaO2 system are synthesized and studied. It is found that the introduction of Sr2+ ions into potassium monogallate leads to the formation of solid solutions with KGaO2 structure in a wide range of additive concentration. These solid solutions exhibit a high conductivity; the conductivity increases monotonically with increasing concentration of strontium within the single-phase range. The electrical characteristics are related to the electrolyte structure. The results are compared with the earlier data for the gallate solid electrolytes with the additives of four-charged cations and the systems based on potassium monoferrite and monoaluminate.  相似文献   

10.
Solid electrolytes with potassium-cation conductivity in the K1 − 2x Pb x GaO2 system were synthesized and studied. It was found that solid solutions based on potassium monogallate are formed in a wide range of compositions. They contain vacancies in the potassium sublattice that provide for high conductivity of electrolytes. The relationship is considered between electric characteristics of solid electrolytes and the composition and structure of solid solutions. The results are compared to the earlier obtained data for similar solid electrolytes based on potassium monoaluminate and monoferrite.  相似文献   

11.
Electrolytes of Ce1-x-y Y x Mg y O2-0.5x-y were prepared with citrate method and were characterized by inductively coupled plasma-atomic emission spectrometry, energy dispersive spectrometry, powder X-ray diffraction, and impedance spectroscopy. The effect of composition on the structure, conductivity, and stability of the electrolytes were investigated. When 0≤x≤ about 0.2 and 0≤y≤ about 0.05, the electrolytes were all single phase materials of ceria-based solid solution. However, when y> about 0.05, the electrolytes became two-phase materials, Y3+ and Mg2+ co-doped ceria-based solid solution and free MgO. The sample with nominal composition of Ce0.815Y0.065Mg0.12O2-d showed ionic conductivity at 973 K close to or even a little higher than that of similarly prepared Ce0.9Gd0.1O1.95, but had lower cost of raw materials and a little better stability in reducing atmosphere. The existing of free MgO improved the stability of the electrolytes in reducing atmosphere, but too much free MgO reduced the conductivity.  相似文献   

12.
This paper studies the possibility of improving the convergence of ab initio free energy perturbation (FEP) calculations by developing customized force fields with the adaptive force-matching (AFM) method. The ab initio FEP method relies on a molecular mechanics (MM) potential to sample configuration space. If the Boltzmann weight of the MM sampling is close to that of the ab initio method, the efficiency of ab initio FEP will be optimal. The difference in the Boltzmann weights can be quantified by the relative energy difference distribution (REDD). The force field developed through AFM significantly improves the REDD when compared with standard MM models, thus improving the convergence of the ab initio FEP calculation. The static dielectric constant εs of ice-Ih was studied with PW-91 through ab initio FEP. With a customized force field developed through AFM, we were able to converge εs to 80 ± 4 with 3,600 configurations. A similar ab initio FEP calculation with the TIP4P model would require 220 times more configurations to achieve the same accuracy. Our study indicates that the PW-91 functional underestimates ice-Ih εs by about 20%.  相似文献   

13.
The minimum concentration of niobium to stabilize the fluorite-type f.c.c. phase in the Bi2O3–Nb2O5 oxide system at temperatures below 996 K was ascertained to be about 10 mol%. Thermal expansion, electrical conductivity and crystal lattice parameters of the Bi(Nb)O1.5+δ solid solutions decrease with increasing niobium content. Thermal expansion coefficients were calculated from the dilatometric data to be (10.314.5)×10−6 K−1 at temperatures in the range 300–700 K and (17.526.0)×10−6 K−1 at 700–1100 K. The conductivity of the Bi1− x Nb x O1.5+δ ceramics is predominantly ionic. The p-type electronic transference numbers of the Bi(Nb)O1.5+δ solid solutions in air were determined to be less than 0.1. Annealing at temperatures below 900 K results in a sharp decrease in conductivity of the Bi1− x Nb x O1.5+δ ceramics. Received: 18 August 1997 / Accepted: 20 October 1997  相似文献   

14.
Ag1 − x Mg1 − x R1 + x (MoO4)3 NASICON-like solid solutions, where R = Al or Sc and 0 ≤ x ≤ 0.5, were prepared; their crystal lattice parameters and thermal stabilities were determined. Silver-ion conductivity was measured, and conductivity activation energy values were calculated for various temperature ranges. Above 400°C, Ag1 − x Mg1 − x R1 + x (MoO4)3 phases have ionic conductivities comparable to the conductivities of sodium-ion and lithium-ion NASICON-like conductors. The conductivity increases as the tervalent cation radius increases or the amount of mobile silver ions increases.  相似文献   

15.
New potassium-conducting solid electrolytes in the mixed ferrite-aluminate system K0.85Pb0.075(Fe1 − x Al x )O2 are synthesized and studied. The electrolytes exhibit high ionic conductivity in the studied temperature range of 350 to 750°C (approximately 10−2 S/cm at 400°C and approximately 10−1 S/cm at 700°C). An increase in the conductivity with increasing concentration of iron in the specimens is a general tendency. However, in a wide range of compositions (from x = 0.2 to x = 0.9), the conductivity only slightly depends on x. Possible reasons for the effect of Fe/Al ratio in the structure of solid electrolytes on their transport properties are discussed.  相似文献   

16.
We discuss the failure of commonly used AM1 and PM3 semiempirical methods to correctly describe acid dissociation. We focus our analysis on HCl because of its physicochemical importance and its relevance in atmospheric chemistry. The structure of non-dissociated and dissociated HCl – (H2O) n clusters is accounted for. The very bad results obtained with PM3 (and also with AM1) are related to large errors in gas-phase proton affinity of water and gas-phase acidity of HCl. Indeed, estimation of pKa values shows that neither AM1 nor PM3 are able to predict HCl dissociation in liquid water since HCl is found to be a weaker acid than H3O+. We have proposed in previous works a modified PM3 approach (PM3-MAIS) adapted to intermolecular calculations. It is derived from PM3 by reparameterization of the core–core functions using ab initio data. Since parameters for H–Cl and O–Cl core–core interactions were not yet available, we have carried out the corresponding optimization. Application of the PM3-MAIS method to HCl dissociation in HCl–(H2O) n clusters leads to a huge improvement over PM3 results. Though the method predicts a slightly overestimated HCl acidity in water environment, the overall agreement with ab initio calculations is very satisfying and justifies efforts to develop new semiempirical methods.  相似文献   

17.
The lithium-ion-conducting inorganic solid electrolytes in the oxide systems Li2O-SiO2-P2O5 and Li2O-TiO2-SiO2-P2O5 were prepared by the solid-state reaction, and the electrolyte pellet made by cold-pressing method had diameter of 13 mm and was about 1 mm thick. Phase identification and surface morphology of the products were carried out by X-ray diffraction and scanning electron microscopy. Ionic conductivity of the pellets was investigated through ac impedance. The results show that the adding of other cations can improve the ionic conductivity of the solid electrolyte, and the sintering temperature and duration can influence the ionic conductivity. The maximum ionic conductivity in the samples is 9.9 × 10−4 S/cm in the Li2O-TiO2-SiO2-P2O5 system. Original Russian Text ? W. Li, M. Wang, Z.H. Li, X.F. Shang, H. Wang, Y.W. Wang, Y.B. Xu, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 11, pp. 1341–1345.  相似文献   

18.
Ionic mobility and electrical conductivity of solid solutions with fluorite structure, obtained with solid-state approach in PbF2–SbF3 and PbF2–SnF2–SbF3 systems, are studied by 19F NMR and electrochemical impedance spectroscopy methods. The 19F NMR spectra parameters, types of ion motions in the fluoride sublattice, and the ionic conductivity magnitude are shown to be determined by the temperature and fluoride concentration in the solid solutions. The solid solution specific conductivity in the PbF2–SbF3 and PbF2–SnF2–SbF3 systems at 420–450 K is as high as ~10–2 S/cm, which allows accounting the solid solutions as a base for preparation of functional materials.  相似文献   

19.
This paper presents the results of our experimental studies of quantitative redistribution and isotope fractionation of oxygen during the crystal growth of cubic solid solutions based on ZrO2. The single crystals were grown by directional crystallization of a melt in a cold container. As stabilizing oxides, we used Y2O3, Gd2O3, and Yb2O3 in concentrations of 8–40 mol %. The results showed that the oxygen isotopic growth effects changed depending on the type and content of the stabilizer in the crystals of ZrO2-R2O3 solid solutions.  相似文献   

20.
A facile method to produce a hybrid of organic-inorganic nanofiber electrolyte via electrospinning is hereby presented. The incorporation of functionalized zirconium oxide (ZrO2) nanoparticles into poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and complexed with lithium trifluoromethanesulfonate (LiCF3SO3) provided an enhanced optical transmissivity and ionic conductivity. The dependence of the nanofiber's morphology, optical and electrochemical properties on the various ZrO2 loading was studied. Results show that while nanofiller content was increased, the diameter of the nanofibers was reduced. The improved bulk ionic conductivity of the nanofiber electrolyte was at 1.96 × 10−5 S cm−1. Owing to the enhanced dispersibility of the 3-(trimethoxysilyl)propyl methacrylate (MPS) functionalized ZrO2, the optical transmissivity of the nanofiber electrolyte was improved significantly. This new nanofiber composite electrolyte membrane with further development has the potential to be next generation electrolyte for energy efficient windows like electrochromic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号