首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Donor–acceptor systems based on subporphyrins with nitro and amino substituents at meta and para positions of the meso‐phenyl groups were synthesized and their photophysical properties have been systematically investigated. These molecules show two types of charge‐transfer interactions, that is, from center to periphery and periphery to center depending on the peripheral substitution, in which the subporphyrin moiety plays a dual role as both donor and acceptor. Based on the solvent‐polarity‐dependent photophysical properties, we have shown that the fluorescence emission of para isomers originates from the solvatochromic, dipolar, symmetry‐broken, and relaxed excited states, whereas the non‐solvatochromic fluorescence of meta isomers is of the octupolar type with false symmetry breaking. The restricted meso‐(4‐aminophenyl) rotation at low temperature prevents the intramolecular charge‐transfer (ICT)‐forming process. The two‐photon absorption (TPA) cross‐section values were determined by photoexcitation at 800 nm in nonpolar toluene and polar acetonitrile solvents to see the effect of ICT on the TPA processes. The large enhancement in the TPA cross‐section value of approximately 3200 GM (1 GM=10?50 cm4 s photon?1) with donor–acceptor substitution has been attributed to the octupolar effect and ICT interactions. A correlation was found between the electron‐donating/‐withdrawing abilities of the peripheral groups and the TPA cross‐section values, that is, p‐aminophenyl>m‐aminophenyl>nitrophenyl. The increased stability of octupolar ICT interactions in highly polar solvents enhances the TPA cross‐section value by a factor of approximately 2 and 4, respectively, for p‐amino‐ and m‐nitrophenyl‐substituted subporphyrins. On the other hand, the stabilization of the symmetry‐broken, dipolar ICT state gives rise to a negligible impact on the TPA processes.  相似文献   

2.
Second order nonlinear optical properties of a series of trinitrosubphthalocyanine (SubPc) isomers were studied experimentally by electric field induced second harmonic (EFISH) generation and hyper Rayleigh scattering (HRS). These experimental values were compared to the ones obtained theoretically employing both sum over states (SOS) and finite field (FF) methods. From these studies, it was shown that the dipolar contributions to the beta tensor are very much dependent on the substitution pattern at the periphery of the subphthalocyanine macrocycle, whereas the octupolar contributions remain mostly unchanged. Consequently, it was deduced that SubPc is extremely well suited for the decoupling of octupolar and dipolar contribution to the NLO response.  相似文献   

3.
Thermally stable dipolar and octupolar (D2d, D3) NLO-phores are readily accessible by combining one, two, or three 4,4'-bis(dialkylaminostyryl)-[2,2']-bipyridyl ligands with zinc(II) salts. The off-resonant beta0 values point out the superiority of octupoles versus dipoles in terms of nonlinearity/transparency tradeoff. The octahedral tris(bipyridyl)zinc(II) complex exhibits a very large beta0 value (241 x 10-30 esu), which is the largest ever reported for octupolar molecules.  相似文献   

4.
Benzothiazole is among prominent electron-withdrawing heteroarene moieties used in a variety of π-conjugated molecules. Its relative orientation with respect to the principal dipole vector(s) of chromophores derived thereof is crucial, affecting photophysical and nonlinear optical properties. Here we compare the photophysics and ultrafast dynamics of dipolar and octupolar molecules comprising a triphenylamine electron-donating core, ethynylene π-conjugated linker(s) and benzothiazole acceptor(s) having the matched or mismatched orientation (with respect to the direction of intramolecular charge transfer), while a carbaldehyde group is attached as an auxiliary acceptor. Among chromophores without the auxiliary acceptor, stronger fluorescence solvatochromism and faster excited state dynamics are exhibited for the derivatives with the mismatched geometry. On the contrary, introduction of the auxiliary acceptor to the benzothiazole unit enhances the intramolecular charge transfer ICT (featuring ultrafast dynamics of the excited state) for the matched geometry. The data confirm the crucial role of the relative orientation of asymmetric heteroaromatic unit (regioisomeric effect) in dipolar as well as in multipolar molecules in tuning linear and nonlinear optical properties as well as excited state dynamics.  相似文献   

5.
The excited-state symmetry-breaking charge transfer (SBCT) dynamics in quadrupolar or octupolar molecules without clear infrared markers is usually hard to be tracked directly. In this work, on the basis of the evolution of instantaneous emission dipole moment obtained by femtosecond transient fluorescence spectroscopy, we presented a real-time characterization of the solvent-induced SBCT dynamics in an octupolar triphenylamine derivative. While the emission dipole moment of the octupolar trimer in weakly polar toluene changes little during the excited-state relaxation, it exhibits a fast reduction in a few picoseconds in strongly polar tetrahydrofuran. In comparison with the uorescence dynamics of dipolar monomer, we deduced that the emitting state of the octupolar trimer in strongly polar solvent, which undergoes solvent-induced structural uctuation, changes from exciton-coupled octupolar to excitation localized dipolar symmetry. In weakly polar solvent, the octupolar symmetry of the trimer is largely preserved during the solvation stabilization.  相似文献   

6.
Cyclization-modified terthiophene displays the change of emission behavior from locally excited (LE) to the intramolecular charge transfer (ICT) state. The rectangular bisterthiophenesiloxanes (DSiTh) was successfully prepared by π–π-stacking-aided hydrogen-bonding interactions. Cyclization-induced ICT in DSiTh could be observed, which was confirmed by absorption spectra, fluorescence spectra, and quantum chemistry analysis. The cyclization produces a strong intramolecular electron redistribution of a highly packed π-conjugated terthiophene. Thus, a distinctive variation of the dipole moment and a through-space ICT happen.  相似文献   

7.
In this article, we describe a series of new complex salts in which electron-rich transition-metal centers are coordinated to three electron-accepting N-methyl/aryl-2,2':4,4' ':4',4' '-quaterpyridinium ligands. These complexes contain either Ru(II) or Fe(II) ions and have been characterized by using various techniques, including electronic absorption spectroscopy and cyclic voltammetry. Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 nm and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer bands. The latter experiments reveal that these putatively octupolar D(3) chromophores exhibit two substantial components of the beta tensor which are associated with transitions to dipolar excited states. Computations involving time-dependent density-functional theory and the finite field method serve to further illuminate the electronic structures and associated linear and NLO properties of the new chromophoric salts.  相似文献   

8.
A series of D3 (Fe(II), Ru(II), Zn(II), Hg(II)) and D2d (Cu(I), Ag(I), Zn(II)) octupolar metal complexes featuring different functionalized bipyridyl ligands has been synthesized, and their thermal, linear (absorption and emission), and nonlinear optical (NLO) properties were determined. Their quadratic NLO susceptibilities were determined by harmonic light scattering at 1.91 microm, and the molecular hyperpolarizability (beta0) values are in the range of 200-657 x 10(-30) esu for octahedral complexes and 70-157 x 10(-30) esu for tetrahedral complexes. The octahedral zinc(II) complex 1 e, which contains a 4,4'-oligophenylenevinylene-functionalized 2,2'-bipyridine, exhibits the highest quadratic hyperpolarizability ever reported for an octupolar derivative (lambdamax=482 nm, beta1.91(1 e)=870 x 10(-30) esu, beta0(1 e)=657 x 10(-30) esu). Herein, we demonstrate that the optical and nonlinear optical (NLO) properties are strongly influenced by the symmetry of the complexes, the nature of the ligands (donor endgroups and pi linkers), and the nature of the metallic centers. For example, the length of the pi-conjugated backbone, the Lewis acidity of the metal ion, and the increase of ligand-to-metal ratio result in a substantial enhancement of beta. The contribution of the metal-to-ligand (MLCT) transition to the molecular hyperpolarizability is also discussed with respect to octahedral d6 complexes (M=Fe, Ru).  相似文献   

9.
A series of star-shaped octupolar triazatruxenes (TATs, 1-6) with intramolecular "push-pull" structure were synthesized and their photophysical properties have been systematically investigated. These chromophores showed obvious solvatochromic effect, i.e., significant bathochromic shift of the emission spectra and larger Stokes shifts were observed in more polar solvents mainly due to photoinduced intramolecular charge transfer (ICT). The two-photon absorption (2PA) cross-section values were determined by two-photon excited fluorescence (2PEF) measurements in toluene and THF. These chromophores exhibited large two-photon absorption cross-sections ranging from 280 to 1620 GM in the near-infrared (NIR) region. Compound 6 showed the largest 2PA action cross-section (σ(2)Φ) of 564 GM and could be a potential two-photon fluorescent (2PF) probe. In addition, compounds 1-6 all displayed good thermal stability and photostability.  相似文献   

10.
3‐(p‐Bromo‐phenyl)‐pyridazinium‐benzoyl methylid (BPPBM) participates in solution at 3 + 3 dipolar thermal dimerization that can be spectrally monitored by the extinction in its visible intramolecular charge transfer (ICT) band. The attenuation of ICT band intensity shows the decrease of the BPPBM concentration with the increasing of dimer concentration. The complex kinetics of light‐assisted dimerization process was studied taking into account that the thermodynamic equilibrium is reached after more than 24 h. On the basis of general order of reaction theory, we found that the dimerization reaction must be described as a multistep mechanism. The rate constants of the dimerization reactions in ethanol (k = 0.00897 s?1) and benzene (k = 0.00774 s?1) solutions were correlated with the BPPBM and dimer structural features established by using the HyperChem 5.02 simulation program package. A kinetic mechanism of 3 + 3 dipolar thermal dimerization for the studied ylid is proposed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 230–239, 2008  相似文献   

11.
A comprehensive study has been made in solution at room temperature (293 K), low temperature (77 K), and in thin films (Zeonex matrixes) of the spectral and photophysical properties of six arylthienyl- and bithienyl-benzothiazole derivatives functionalized with different donor groups. Similar experiments have been carried out with two related precursors (containing the arylthienyl and aryl-bithienyl conjugated systems), and results are compared. Singlet-singlet and triplet-triplet absorption spectra, emission spectra together with lifetimes and quantum yields have been obtained, and from these data the rates for all the radiative and nonradiative processes determined, providing information on the dominant decay processes. The arylthienyl-benzothiazole derivatives show high fluorescence quantum yields (phi(F)) with negligible internal conversion (phi(IC)), whereas the bithienyl-benzothiazoles display lower but still significant phi(F) values, but now radiationless processes (phi(IC) and phi(ISC)) are competitive. A comparison with the analogous oligothiophenes is made. Singlet oxygen yields were also determined and the triplet energy transfer to (3)O2 to produce (1)O2 was found to be highly efficient with values of S(Delta)(= phi(Delta)/phi(T)) varying from 0.4 to 1.  相似文献   

12.
Octupolar oligomers containing 2-12 molecules of 1,3,5-tricyano-2,4,6-tris(styryl)benzene derivatives have been synthesized and their nonlinear optical and two-photon absorption (TPA) properties were determined. The beta(0) values are in the range of (85-1219) x 10(-30) esu and increase monotonically with the increasing number of the octupolar units within the molecule. The two-photon-induced fluorescence excitation spectra are quite similar to the single-photon absorption spectra except that the wavelength is doubled, indicating that the one- and two-photon allowed excited states are the same. The peak TPA cross-section values (delta(max)) measured with nanosecond pulses by the two-photon-induced fluorescence method are in the range (3010-62, 930) x 10(-50) cm(4)s photon(-1). The delta(max) increases as the number of the octupolar units in the molecules increases. A linear relationship is observed between delta(max) and beta, and this delta-beta relationship serves as a useful design strategy for the synthesis of novel octupolar oligomers and polymers with large TPA and beta.  相似文献   

13.
The molecular dynamics of a series of organometallic complexes covalently bound to amorphous silica surfaces is determined experimentally using solid-state nuclear magnetic resonance (NMR) spectroscopy and density functional theory calculations (DFT). The determination is carried out for a series of alkylidene-based catalysts having the general formula [([triple bond]SiO)M(ER)(=CH(t)Bu)(R')] (M = Re, Ta, Mo or W; ER = C(t)Bu, NAr or CH2(t)Bu; R' = CH2(t)Bu, NPh2, NC4H4). Proton-carbon dipolar coupling constants and carbon chemical shift anisotropies (CSA) are determined experimentally by solid-state NMR. Room-temperature molecular dynamics is quantified through order parameters determined from the experimental data. For the chemical shift anisotropy data, we validate and use a method that integrates static values for the CSA obtained computationally by DFT, obviating the need for low-temperature measurements. Comparison of the room-temperature data with the calculations shows that the widths of the calculated static limit dipolar couplings and CSAs are always greater than the experimentally determined values, providing a clear indication of motional averaging on the NMR time scale. Moreover, the dynamics are found to be significantly different within the series of molecular complexes, with order parameters ranging from = 0.5 for [([triple bond]SiO)Ta(=CH(t)Bu)(CH2(t)Bu)2] and [([triple bond]SiO)Re([triple bond]C(t)Bu)(=CH(t)Bu)(CH2(t)Bu)] to = 0.9 for [([triple bond]SiO)Mo([triple bond]NAr)(=CH(t)Bu)(R') with R' = CH2(t)Bu, NPh2, NC4H4. The data also show that the motion is not isotropic and could be either a jump between two sites or more likely restricted librational motion. The dynamics are discussed in terms of the molecular structure of the surface organometallic complexes, and the orientation of the CSAs tensor at the alkylidene carbon is shown to be directly related to the magnitude of the alpha-alkylidene CH agostic interation.  相似文献   

14.
A comparison of the square-planar complexes of group 10 (Pd(II), Pt(II)) and 16 (Se(II), Te(II)) centers with the tetraisopropyldiselenoimidodiphosphinate anion, [N((i)Pr2PSe)2](-), is made on the basis of the results of a solid-state (31)P, (77)Se, (125)Te, and (195)Pt NMR investigation. Density functional theory calculations of the respective chemical shift and (14)N electric field gradient tensors in these compounds complement the experimental results. The NMR spectra were analyzed to determine the respective phosphorus, selenium, tellurium, and platinum chemical shift tensors along with numerous indirect spin-spin coupling constants. Special attention was given to observed differences in the NMR parameters for the transition metal and main-group square-planar complexes. Residual dipolar coupling between (14)N and (31)P, not observed in the solid-state (31)P NMR spectra of the Pd(II) and Pt(II) complexes, was observed at 4.7 and 7.0 T for M[N((i)Pr 2PSe)2]2(M = Se, Te) yielding average values of R((31)P, (14)N)eff = 890 Hz, CQ((14)N) = 2.5 MHz, (1) J( (31)P, (14)N) iso= 15 Hz, alpha = 90 degrees , beta = 17 degrees . The span, Omega, and calculated orientation of the selenium chemical shift tensor for the diselenoimidodiphosphinate anion is found to depend on whether the selenium is located within a pseudoboat or distorted-chair MSe 2P 2N six-membered ring. The largest reported values of (1)J((77)Se, (77)Se) iso, 405 and 435 Hz, and (1)J((125)Te, (77)Se)iso, 1120 and 1270 Hz, were obtained for the selenium and tellurium complexes, respectively; however, in contrast a correspondingly large value of (1)J((195)Pt, (77)Se)iso was not found. The chemical shift tensors for the central atoms, Se(II) and Te(II), possess positive skews, while for Pt(II) its chemical shift tensor has a negative kappa. This observed difference for the shielding of the central atoms has been explained using a qualitative molecular orbital approach.  相似文献   

15.
A series of heavier group 14 element, terminal phosphide complexes, M(BDI)(PR(2)) (M = Ge, Sn, Pb; BDI = CH{(CH(3))CN-2,6-iPr(2)C(6)H(3)}(2); R = Ph, Cy, SiMe(3)) have been synthesized. Two different conformations (endo and exo) are observed in the solid-state; the complexes with an endo conformation have a planar coordination geometry at phosphorus (M = Ge, Sn; R = SiMe(3)) whereas the complexes possessing an exo conformation have a pyramidal geometry at phosphorus. Solution-state NMR studies reveal through-space scalar coupling between the tin and the isopropyl groups on the N-aryl moiety of the BDI ligand, with endo and exo exhibiting different J(SnC) values. The magnitudes of the tin-phosphorus and lead-phosphorus coupling constants, |J(SnP)| and |J(PbP)|, differ significantly depending upon the hybridization of the phosphorus atom. For Sn(BDI)(P{SiMe(3)}(2)), |J(SnP)| is the largest reported in the literature, surpassing values attributed to compounds with tin-phosphorus multiple-bonds. Low temperature NMR studies of Pb(BDI)(P{SiMe(3)}(2)) show two species with vastly different |J(PbP)| values, interpreted as belonging to the endo and exo conformations, with sp(2)- and sp(3)-hybridized phosphorus, respectively.  相似文献   

16.
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.  相似文献   

17.
A series of [2.2]paracylophane-bridged bis-triarylamine mixed-valence (MV) radical cations were analyzed by a generalized Mulliken-Hush (GMH) three-level model which takes two transitions into account: the intervalence charge transfer (IV-CT) band which is assigned to an optically induced hole transfer (HT) from one triarylamine unit to the second one and a second band associated with a triarylamine radical cation to bridge (in particular, the [2.2]paracyclophane bridge) hole transfer. From the GMH analysis, we conclude that the [2.2]paracyclophane moiety is not the limiting factor which governs the intramolecular charge transfer. AM1-CISD calculations reveal that both through-bond as well as through-space interactions of the [2.2]paracyclophane bridge play an important role for hole transfer processes. These electronic interactions are of course smaller than direct pi-conjugation, but from the order of magnitude of the couplings of the [2.2]paracyclophane MV species, we assume that this bridge is able to mediate significant through-space and through-bond interactions and that the cyclophane bridge acts more like an unsaturated spacer rather than a saturated one. From the exponential dependence of the electronic coupling V between the two triarylamine localized states on the distance r between the two redox centers, we infer that the hole transfer occurs via a superexchange mechanism. Our analysis reveals that even significantly longer pi-conjugated bridges should still mediate significant electronic interactions because the decay constant beta of a series of pi-conjugated MV species is small.  相似文献   

18.
The electron-transfer process of a first generation dendrimer with a triphenylamine core substituted with one peryleneimide chromophore at the rim (N1P1) was investigated by steady-state and time-resolved spectroscopic techniques in two different solvents of medium and low polarity. Single photon counting experiments showed a fast charge separation and a thermally activated back reaction, which is uncommon for a polyaryl bridge or long-distance through-space electron transfer. The four exponential fluorescence decay can be traced to the presence of two subsets of molecules, which are constitutional isomers of N1P1. Although formally N1P1 resembles a donor-bridge-acceptor compound, detailed analysis of the data shows that the electron transfer occurs by a through-space mechanism. This amine core dendrimer has peculiar and unique characteristics resulting in the observation of efficient back transfer and delayed peryleneimide fluorescence in diethyl ether at 293 K and very long-lived charge recombination luminescence at 77 K.  相似文献   

19.
The synthesis, one-photon photophysics and two-photon absorption (2PA) of three dipolar D-π-A 4-[9,9-di(2-ethylhexyl)-7-diphenylaminofluoren-2-yl]-2,2':6',2'-terpyridine and their platinum chloride complexes with different linkers between the donor and acceptor are reported. All ligands exhibit (1)π,π* transition in the UV and (1)π,π*/(1)ICT (intramolecular charge transfer) transition in the visible regions, while the complexes display a lower-energy (1)π,π*/(1)CT (charge transfer) transition in the visible region in addition to the high-energy (1)π,π* transitions. All ligands and the complexes are emissive at room temperature and 77 K, with the emitting excited state assigned as the mixed (1)π,π* and (1)CT states at RT. Transient absorption from the ligands and the complexes were observed. 2PA was investigated for all ligands and complexes. The two-photon absorption cross-sections (σ(2)) of the complexes (600-2000 GM) measured by Z-scan experiment are much larger than those of their corresponding ligands measured by the two-photon induced fluorescence method. The ligand and the complex with the ethynylene linker show much stronger 2PA than those with the vinylene linker.  相似文献   

20.
Fast and efficient intramolecular charge transfer (ICT) and dual fluorescence is observed with the planarized aminobenzonitrile 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in a series of solvents from n-hexane to acetonitrile and methanol. Such a reaction does not take place for the related molecules with 1-isopropyl (NIC6) and 1-methyl (NMC6) groups, nor with the 1-alkyl-5-cyanoindolines with methyl (NMC5), isopropyl (NIC5), or tert-butyl (NTC5) substituents. For these molecules, a single fluorescence band from a locally excited (LE) state is found. The charge transfer reaction of NTC6 is favored by its relatively small energy gap DeltaE(S(1),S(2)), in accordance with the PICT model for ICT in aminobenzonitriles. For the ICT state of NTC6, a dipole moment of around 19 D is obtained from solvatochromic measurements, similar to micro(e)(ICT) = 17 D of 4-(dimethylamino)benzonitrile (DMABN). For NMC5, NIC5, NTC5, NMC6, and NIC6, a dipole moment of around 10 D is determined by solvatochromic analysis, the same as that of the LE state of DMABN. For NTC6 in diethyl ether at -70 degrees C, the forward ICT rate constant (1.3 x 10(11) s(-1)) is much smaller than that of the back reaction (5.9 x 10(9) s(-1)), showing that the equilibrium is on the ICT side. The results presented here make clear that ICT can very well take place with a planarized molecule such as NTC6, when DeltaE(S(1),S(2)) is sufficiently small, indicating that a perpendicular twist of the amino group relative to the rest of the molecule is not necessary for reaching an ICT state with a large dipole moment. The six-membered alicyclic ring in NMC6, for example, prevents ICT by increasing DeltaE(S(1),S(2)) relative to that of DMABN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号