首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A dynamic problem for two equal rectangular cracks in an infinite elastic plate is considered. The two cracks are placed perpendicular to the plane surfaces of the plate. An incoming shock tensile stress is returned by the cracks. In the Laplace transform domain, the boundary conditions at the two sides of the plate are satisfied using the Fourier transform technique. The mixed boundary conditions are reduced to dual integral equations. Crack displacement is expanded in a series of functions which are zero outside of the cracks. The unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors are defined in the Laplace transform domain and these are inverted using a numerical method.  相似文献   

2.
The anti-plane impact fracture analysis was performed for a weak-discontinuous interface in a symmetrical functionally gradient composite strip. A new bi-parameter exponential function was introduced to simulate the continuous variation of material properties. Using Laplace and Fourier integral transforms, we reduced the problem to a dual integral equation and obtained asymptotic analytical solution of crack-tip stress field. Based on the numerical solution of the second kind of Fredholm integral equation transformed from the dual integral equation, the effects of the two non-homogeneity parameters on DSIF were discussed. It was indicated that the relative stiffness of the interface and the general stiffness of the whole structure are two important factors affecting the impact fracture behavior of the weak-discontinuous interface. The greater the relative stiffness of the interface is, the higher the value of the dynamic stress intensity factor will be. The greater the general stiffness of the whole structure is, the shorter the time for DSIF to arrive at the peak value and then to stabilize to the steady one. If the general stiffness of the whole structure is great enough, there will be an oscillation between the peak and steady values of DSIF.  相似文献   

3.
In the present paper dynamic stress intensity factor and strain energy density factor of multiple cracks in the functionally graded orthotropic half-plane under time-harmonic loading are investigated. By utilizing the Fourier transformation technique the stress fields are obtained for a functionally graded orthotropic half-plane containing a Volterra screw dislocation. The variations of the material properties are assumed to be exponential forms which the equilibrium has an analytical solution. The dislocation solution is utilized to formulate integral equation for the half-plane weakened by multiple smooth cracks under anti-plane deformation. The integral equations are of Cauchy singular type at the location of dislocation which are solved numerically to obtain the dislocation density on the faces of the cracks. The dislocation densities are employed to determined stress intensity factor and strain energy density factors (SEDFs) for multiple smooth cracks under anti-plane deformation. Numerical examples are provided to show the effects of material properties and the crack configuration on the dynamic stress intensity factors and SEDFs of the functionally graded orthotropic half-plane with multiple curved cracks.  相似文献   

4.
Summary In this paper, the scattering of SH waves by a magneto-electro-elastic cylindrical inclusion partially debonded from its surrounding magneto-electro-elastic material is investigated by using the wavefunction expansion method and a singular integral equation technique. The debonding regions are modeled as multiple arc-shaped interface cracks with non-contacting faces. The magneto-electric impermeable boundary conditions are adopted. By expressing the scattered fields as wavefunction expansions with unknown coefficients, the mixed boundary-value problem is firstly reduced to a set of simultaneous dual-series equations. Then, dislocation density functions are introduced as unknowns to transform these dual-series equations to Cauchy singular integral equations of the first type,which can be numerically solved easily. The solution is valid for arbitrary number and size of the arc-shaped interface cracks. Finally, numerical results of the dynamic stress intensity factors are presented for the cases of one debond. The effects of incident direction, crack configuration and various material parameters on the dynamic stress intensity factors are discussed. The solution of this problem is expected to have applications in the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.The work was supported by the National Natural Science Fund of China (Project No. 19772029) and the Research Fund for Doctors of Hebei Province, China (Project No. B2001213).  相似文献   

5.
Many important applications of crack mechanics involve self-equilibrating residual or thermal stress fields. For these types of problems, the traditional fracture mechanics approach based on the superposition principle has ignored the effect of crack surface contact when the crack-tip propagates into the residual compressive region. Contact between the crack faces and the wedging action are responsible for subsequent crack-tip reopening, which often leads to a much larger mode I stress intensity factor. In this study, an analytical approach is used to study the effect of crack face contact for a period array of collinear cracks embedded in several typical residual stress fields. It is found that the nonlinear contact between crack surfaces dominates the cracking behavior in residual/thermal stress fields, which is responsible for crack coalescence.  相似文献   

6.
DYNAMICSTRESSINTENSITYFACTORSAROUNDTWOCRACKSNEARANINTERFACEOFTWODISSIMILARELASTICHALF-PLANESUNDERIN-PLANESHEARIMPACTLOADQianR...  相似文献   

7.
The dynamic behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces subjected to the harmonic waves is investigated by a new method. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved by using Schmidt’s method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of cracks, the frequency of the incident wave, the thickness of the piezoelectric layer and the constants of the materials upon the dynamic stress intensity factor of cracks.  相似文献   

8.
By using the finite-part integral concepts and limit technique, the hypersingular integrodifferential equations of three-dimensional (3D) planar interface crack were obtained; then the dominant-part analysis of 2D hypersingular integral was further used to investigate the stress fields near the crack front theoretically, and the accurate formulae were obtained for the singular stress fields and the complex stress intensity factors. After that, a numerical method is proposed to solve the hypersingular integrodifferential equations of 3D planar interface crack, and the problem of elliptical planar crack is then considered to show the application of the method. The numerical results obtained are satisfactory. Project supported by the Foundation of Solid Mechanics Open Research Laboratory of State Education Commission at Tongji University and the National Natural Science Foundation.  相似文献   

9.
The dynamic stress intensity factors (DSIFs) of two 3D rectangular cracks in a transversely isotropic elastic material under an incident harmonic stress wave are investigated by generalized Almansi’s theorem and the Schmidt method in the present paper. Using 2D Fourier transform and defining the jumps of displacement components across the crack surface as the unknown functions, three pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement components across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the geometric shape of the rectangular crack, the characteristics of the harmonic wave and the distance between two rectangular cracks on the DSIFs of the transversely isotropic elastic material.  相似文献   

10.
In recent years, the functionally graded materials (FGMs) have been widely applied in extremely high temperate environment. In this paper, the dynamic behavior of two collinear cracks in FGM layer bonded to dissimilar half planes under anti-plane shear waves is studied by the Schmidt method. By using the Fourier transform technique, the present problem can be solved with a dual integral equation. These equations are solved using the Schmidt method. The present method is used to illustrate the fundamental behavior of the interacting cracks in FGMs under dynamic loading. Furthermore, the effects of the geometry of the interacting cracks, the shear stress wave velocity of the materials and the frequency of the incident wave on the Dynamic Stress Intensity Factor are investigated.  相似文献   

11.
A boundary integral equation method is applied to the study of the interaction of plane elastic waves with a periodic array of collinear inplane cracks. Numerical results are presented for the dynamic stress intensity factors. The effects of the wave type, wave frequency, wave incidence angle, and crack spacing on the dynamic stress intensity factors are analyzed in detail. The project supported by the Committee of Science and Technology of Shanghai and Tongji University  相似文献   

12.
The present work is concerned with the problem of mode Ⅲ crack perpendicular to the interface of a bi-strip composite. One of these strips is made of a functionally graded material and the other of an isotropic material, which contains an edge crack perpendicular to and terminating at the interface. Fourier transforms and asymptotic analysis are employed to reduce the problem to a singular integral equation which is numerically solved using Gauss-Chebyshev quadrature formulae. Furthermore, a parametric study is carried out to investigate the effects of elastic and geometric characteristics of the composite on the values of stress intensity factor.  相似文献   

13.
冯文杰  Su RKL 《力学学报》2005,37(1):120-124
研究位于功能梯度层和外部均匀材料之间多个环形界面裂纹的扭转冲击问题,功能梯度材料 (FGM)粘结在两种不同的弹性材料之间,功能梯度层和外部材料之间环形界面裂纹的数目是任意的.引进积分变换和位错密度函数将问题化为求解Laplace域里标准的Cauchy奇异积分方程,进而化为求解代数方程;应用Laplace数值反演技术,计算时域里的动应力强度因子(DSIF).考查了结构几何尺度和材料特性对裂尖动态断裂特性的影响.数值结果表明,DSIF存在一个主峰,到达主峰后,在其相应的静态值附近波动并最终趋于稳定;增加FGM的梯度能减小DSIF的峰值.  相似文献   

14.
Summary Dynamic stresses around three coplanar cracks in an infinite elastic medium are determined in the paper. Two of the cracks are equal, rectangular and symmetrically situated on either side of the centrally located rectangular crack. Time-harmonic normal traction acts on each surface of the three cracks. To solve the problem, two kind of solutions are superposed: one is a solution for a rectangular crack in an infinite elastic medium, and the other one is that for two rectangular cracks in an infinite elastic medium. The unknown coefficients in the combined solution are determined by applying the boundary conditions at the surfaces of the cracks. Finally, stress intensity factors are calculated numerically for several crack configurations. Received 14 July 1998; accepted for publication 2 December 1998  相似文献   

15.
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters.  相似文献   

16.
Dynamic stresses are obtained for an infinite orthotropic medium weakened by two collinear cracks. Time-harmonic elastic waves are interrupted at normal incidence by the line cracks. Fourier transform is applied reducing the problem to solving a pair of dual integral equations. Solution method involves expanding the crack surface displacement in a series of functions that vanish along a collinear line outside the cracks. The unknown coefficients in the series are evaluated by using the Schmidt method. Dynamic stress intensity factors are computed and displayed graphically for an orthotropic medium that corresponds to the elastic properties of boron-epoxy composite.  相似文献   

17.
In this paper, the stress-intensity factors for two collinear cracks in a composite bonded by an isotropic and an anisotropic half-plane were calculated. The cracks are paralell to the interface, and the crack surfaces are loaded by uniform shear stresses. By using Fourier transform, the mixed boundary value problem is reduced to a set of singular integral equations. For solving the integral equations, the crack surface displacements are expanded in triangular series and the unknown coefficients in the series are determined by the Schmidt method. The stress intensity factors for the cracks in the boron-fibre plastics and aluminium joined composite and in carbon-fibre reinforced plastics were calculated numerically.  相似文献   

18.
利用双材料位移基本解和Somigliana公式,将三维体内含垂直于双材料界面混合型裂纹问题归结为求解一组超奇异积分方程。使用主部分析法,通过对裂纹前沿应力奇性的分析,得到用裂纹面位移间断表示的应力强度因子的计算公式,进而利用超奇异积分方程未知解的理论分析结果和有限部积分理论,给出了超奇异积分方程的数值求解方法。最后,对典型算例的应力强度因子做了计算,并讨论了应力强度因子数值结果的收敛性及其随各参数变化的规律。  相似文献   

19.
本文建立了一种多层材料复合结构的界面裂纹问题分析模型。当两种材料之间插入第三种薄层弹性材料,裂纹位于第三种材料与第一或第二种弹性材料的界面上,且插页材料3~#的厚度相对于裂纹尺寸或平面内其他尺寸很小时,可以得到该问题裂纹尖端的复应力强度因子通式。本文用有限元法对结果进行了数值验证,并进行了有关问题的讨论。  相似文献   

20.
The dynamic interaction of two collinear interface cracks between two dissimilar functionally graded piezoelectric/piezomagnetic material strips subjected to the anti-plane shear harmonic stress waves was investigated. By using the Fourier transform, the problem can be solved with the help of a pair of triple integral equations in which the unknown variable is jump of displacement across the crack surfaces. These equations are solved using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter, the circular frequency of the incident waves and the thickness of the strip upon stress, electric displacement and magnetic flux intensity factors of cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号