首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We discuss how threshold detectors can be used for a direct measurement of the full distribution of current fluctuations and how to exploit Josephson junctions in this respect. We propose a scheme to characterize the full counting statistics from the current dependence of the escape rate measured. We illustrate the scheme with explicit results for tunnel, diffusive, and quasiballistic mesoscopic conductors.  相似文献   

2.
We present a theory for the full distribution of current fluctuations in incoherent diffusive superconducting junctions, subjected to a voltage bias. This theory of full counting statistics of incoherent multiple Andreev reflections is valid for an arbitrary applied voltage. We present a detailed discussion of the properties of the first four cumulants as well as the low and high voltage regimes of the full counting statistics. The work presented here is an extension of the results of Pilgram et al. [31]. PACS 73.23.-b; 02.50.-r; 05.40.-a; 72.70.+m  相似文献   

3.
We study the current statistics in normal diffusive conductors in contact with a superconductor. Using an extension of the Keldysh Green's function method we are able to find the full distribution of charge transfers for all temperatures and voltages. For the non-Gaussian regime, we show that the equilibrium current fluctuations are enhanced by the presence of the superconductor. We predict an enhancement of the nonequilibrium current noise for temperatures below and voltages of the order of the Thouless energy E(Th) = D/L(2). Our calculation fully accounts for the proximity effect in the normal metal and agrees with experimental data.  相似文献   

4.
We evaluate the full current statistics (FCS) in the low-dimensional (1D and 2D) diffusive conductors in the incoherent regime eV>E(Th)=D/L(2), E(Th) being the Thouless energy. It is shown that the Coulomb interaction substantially enhances the probability of big current fluctuations for short conductors with E(Th)>1/tau(E), tau(E) being the energy relaxation time, leading to the exponential tails in the current distribution. The current fluctuations are most strong for low temperatures, provided E(Th) approximately [(eV)(2)/Dnu(2)(1)](1/3) for 1D and E(Th) approximately (eV/g)ln(g for 2D, where g is a dimensionless conductance and nu(1) is a 1D density of states. The FCS in the "hot electron" regime is also discussed.  相似文献   

5.
Electron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula. We illustrate our methodology by calculating the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson statistics at full transmission to Poisson statistics close to pinch-off. Even when the low-frequency transport is noiseless, the electrons are not equally spaced in time due to their inherent wave nature. We discuss the implications for renewal theory in mesoscopic systems and point out several analogies with level spacing statistics and random matrix theory.  相似文献   

6.
Interference of electronic waves undergoing Andreev reflection in diffusive conductors determines the energy profile of the conductance on the scale of the Thouless energy. A similar dependence exists in the current noise, but its behavior is known only in a few limiting cases. We consider a metallic diffusive wire connected to a superconducting reservoir through an interface characterized by an arbitrary distribution of channel transparencies. Within the quasiclassical theory for current fluctuations we provide a general expression for the energy dependence of the current noise.  相似文献   

7.
We formulate a simple additivity principle allowing one to calculate the whole distribution of current fluctuations through a large one dimensional system in contact with two reservoirs at unequal densities from the knowledge of its first two cumulants. This distribution (which in general is non-Gaussian) satisfies the Gallavotti-Cohen symmetry and generalizes the one predicted recently for the symmetric simple exclusion process. The additivity principle can be used to study more complex diffusive networks including loops.  相似文献   

8.
We have measured the full counting statistics of current fluctuations in a semiconductor quantum dot (QD) by real-time detection of single electron tunneling with a quantum point contact. This method gives direct access to the distribution function of current fluctuations. Suppression of the second moment (related to the shot noise) and the third moment (related to the asymmetry of the distribution) in a tunable semiconductor QD is demonstrated experimentally. With this method we demonstrate the ability to measure very low current and noise levels.  相似文献   

9.
Nonequilibrium bosonization technique is used to study current fluctuations of interacting electrons in a single-channel quantum wire representing a Luttinger liquid (LL) conductor. An exact expression for the time resolved full counting statistics of the transmitted charge is derived. It is given by the Fredholm determinant of the counting operator with a time-dependent scattering phase. The result has a form of counting statistics of noninteracting particles with fractional charges, induced by scattering off the boundaries between the LL wire and the noninteracting leads.  相似文献   

10.
We show that the fluctuations of the partial current in two dimensional diffusive systems are dominated by vortices leading to a different scaling from the one predicted by the hydrodynamic large deviation theory. This is supported by exact computations of the variance of partial current fluctuations for the symmetric simple exclusion process on general graphs. On a two-dimensional torus, our exact expressions are compared to the results of numerical simulations. They confirm the logarithmic dependence on the system size of the fluctuations of the partial flux. The impact of the vortices on the validity of the fluctuation relation for partial currents is also discussed in an Appendix.  相似文献   

11.
We derive a stochastic path integral representation of counting statistics in semiclassical systems. The formalism is introduced on the simple case of a single chaotic cavity with two quantum point contacts, and then further generalized to find the propagator for charge distributions with an arbitrary number of counting fields and generalized charges. The counting statistics is given by the saddle-point approximation to the path integral, and fluctuations around the saddle point are suppressed in the semiclassical approximation. We use this approach to derive the current cumulants of a chaotic cavity in the hot-electron regime.  相似文献   

12.
《Physics letters. A》2014,378(11-12):892-898
Full counting statistics is a powerful tool to characterize the noise and correlations in transport through mesoscopic systems. In this work, we propose the theory of conditional spin counting statistics, i.e., the statistical fluctuations of spin-up (down) current given the observation of the spin-down (up) current. In the context of transport through a single quantum dot, it is demonstrated that a strong Coulomb interaction leads to a conditional spin counting statistics that exhibits a substantial change in comparison to that without Coulomb repulsion. It thus can be served as an effective way to probe the Coulomb interactions in mesoscopic transport systems. In case of spin polarized transport, it is further shown that the conditional spin counting statistics offers a transparent tool to reveal the spin-resolved bunching behavior.  相似文献   

13.
We study the full counting statistics of charge transport through a quantum dot tunnel coupled to one normal and one superconducting lead with a large superconducting gap. As a function of the level detuning, there is a crossover from a regime with strong superconducting correlations in the quantum dot to a regime in which the proximity effect on the quantum dot is suppressed. We analyze the current fluctuations of this crossover in the shot-noise regime. In particular, we predict that the full counting statistics changes from Poissonian with charge 2e, typical for Cooper pairs, to Poissonian with charge e, when the superconducting proximity effect is present. Thus, the onset of the superconducting proximity effect is revealed by the reduction of the Fano factor from 2 to 1.  相似文献   

14.
Dynamic properties of Brownian particles immersed in a periodic potential with two barriers V1 and V2 (symmetric bistable potential) are studied by using the Fokker-Planck equation which we solve numerically by the matrix continued fraction method. This study will therefore serve to demonstrate the influence of this form of potential, which is of great interest for superionic conductors and for many other solid systems, on the diffusion process. Thus, we have calculated the full width at half maximum (FWHM) ) of the quasi-elastic line of the dynamic structure factor, for a large range of values of the wave-vectors q. Our results show clearly that, by varying the ratio of the barriers strictly between and 1, the Fokker-Planck equation describes a diffusive process which has some characteristic of jump and liquid-like regimes. While in the limit cases, i.e. when tends to or 1, the diffusion process can be described only by a simple jump motion. However, the jump-lengths corresponding to each limit case are not equal. In general the change of the ratio is found to have a significant effect on the character of the diffusive motion. We have also performed Fokker-Planck dynamics calculations of the diffusion coefficient in a bistable potential. We have found a good agreement between numerical calculations and analytical approximation results obtained in the high friction limit. Received 25 May 1998 and Received in final form 15 November 1998  相似文献   

15.
We investigate the effect of weak interactions on the full counting statistics of charge transfer through an arbitrary mesoscopic conductor. We show that the main effect can be incorporated into an energy dependence of the transmission eigenvalues and study this dependence in a nonperturbative approach. An unexpected result is that all mesoscopic conductors behave at low energies such as either a single or a double tunnel junction, which divides them into two broad classes.  相似文献   

16.
We present measurements of the time-dependent fluctuations of electrical current in a voltage-biased tunnel junction. We were able to simultaneously extract the first three moments of the current counting statistics. Detailed comparison of the second and the third moments reveals that the statistics is accurately described as Poissonian, expected for spontaneous current fluctuations due to electron charge discreteness, realized in tunneling transport at negligible coupling to environment.  相似文献   

17.
We analyze a systematic algorithm for the exact computation of the current cumulants in stochastic nonequilibrium systems, recently discussed in the framework of full counting statistics for mesoscopic systems. This method is based on identifying the current cumulants from a Rayleigh-Schrödinger perturbation expansion for the generating function. Here it is derived from a simple path-distribution identity and extended to the joint statistics of multiple currents. For a possible thermodynamical interpretation, we compare this approach to a generalized Onsager-Machlup formalism. We present calculations for a boundary driven Kawasaki dynamics on a one-dimensional chain, both for attractive and repulsive particle interactions.  相似文献   

18.
The distribution of waiting times between elementary tunneling events is of fundamental importance for understanding the stochastic charge transfer processes in nanoscale conductors. Here we investigate the waiting time distributions (WTDs) of periodically driven single-electron emitters and evaluate them for the specific example of a mesoscopic capacitor. We show that the WTDs provide a particularly informative characterization of periodically driven devices and we demonstrate how the WTDs allow us to reconstruct the full counting statistics (FCS) of charges that have been transferred after a large number of periods. We find that the WTDs are capable of describing short-time physics and correlations which are not accessible via the FCS alone.  相似文献   

19.
We present the first study of the statistics of GHz photons in quantum circuits, using Hanbury Brown and Twiss correlations. The super-Poissonian and Poissonian photon statistics of thermal and coherent sources, respectively, made of a resistor and a radio frequency generator, are measured down to the quantum regime at milli-Kelvin temperatures. As photon correlations are linked to the second and fourth moments of current fluctuations, this experiment, which is based on current cryogenic electronics, may become a standard for probing electron/photon statistics in quantum conductors.  相似文献   

20.
We study the statistical mechanics of a two-dimensional Bose gas with a repulsive delta-function interaction, using a mean-field approximation. By a direct counting of states we establish that this model obeys exclusion statistics and is equivalent to an ideal exclusion-statistics gas. We also show that this result is consistent with a full quantum-mechanical treatment of a quasi-two-dimensional system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号