首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 769 毫秒
1.
For a cubature formula of the form $$\int\limits_0^{2\pi } {\int\limits_0^{2\pi } {f(x,y)dxdy = \frac{{4\pi ^2 }} {{mn}}\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 0}^{m - 1} {f\left( {\frac{{2\pi i}} {n},\frac{{2\pi j}} {m}} \right) + R_{n,m} (f)} } } }$$ on a Chebyshev grid, the remainder R n,m (f) is proved to satisfy the sharp estimate $$\mathop {\sup }\limits_{f \in H\left( {r_1 ,r_2 } \right)} \left| {R_{n,m} (f)} \right| = O\left( {n^{ - r_1 + 1} + m^{ - r_1 + 1} } \right)$$ in some class of functions H(r 1, r 2) defined by a generalized shift operator. Here, r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in the O-term depends only on ??.  相似文献   

2.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

3.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

4.
Suppose f∈Hp(Tn), 0 r δ , δ=n/p?(n+1)/2. In this paper we eastablish the following inequality $$\mathop {\sup }\limits_{R > 1} \left\{ {\frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta } \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqslant C_{R,p} \left\| f \right\|_{H^p (T^R )} $$ It implies that $$\mathop {\lim }\limits_{R \to \infty } \frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta - f} \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} = 0$$ Moreover we obtain the same conclusion when p=1 and n=1.  相似文献   

5.
Let fC[?1, 1]. Let the approximation rate of Lagrange interpolation polynomial of f based on the nodes $ \left\{ {\cos \frac{{2k - 1}} {{2n}}\pi } \right\} \cup \{ - 1,1\} $ be Δ n + 2(f, x). In this paper we study the estimate of Δ n + 2(f,x), that keeps the interpolation property. As a result we prove that $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left| {T_n (x)} \right|\ln (n + 1) + \omega \left( {f,\frac{{\sqrt {1 - x^2 } }} {n}\left| {T_n (x)} \right|} \right)} \right\}, $$ where T n (x) = cos (n arccos x) is the Chebeyshev polynomial of first kind. Also, if fC r [?1, 1] with r ≧ 1, then $$ \Delta _{n + 2} (f,x) = \mathcal{O}(1)\left\{ {\frac{{\sqrt {1 - x^2 } }} {{n^r }}\left| {T_n (x)} \right|\omega \left( {f^{(r)} ,\frac{{\sqrt {1 - x^2 } }} {n}} \right)\left( {\left( {\sqrt {1 - x^2 } + \frac{1} {n}} \right)^{r - 1} \ln (n + 1) + 1} \right)} \right\}. $$   相似文献   

6.
Let S j : (Ω, P) → S 1 ? ? be an i.i.d. sequence of Steinhaus random variables, i.e. variables which are uniformly distributed on the circle S 1. We determine the best constants a p in the Khintchine-type inequality $${a_p}{\left\| x \right\|_2} \leqslant {\left( {{\text{E}}{{\left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|}^p}} \right)^{1/p}} \leqslant {\left\| x \right\|_2};{\text{ }}x = ({x_j})_{j = 1}^n \in {{\Bbb C}^n}$$ for 0 < p < 1, verifying a conjecture of U. Haagerup that $${a_p} = \min \left( {\Gamma {{\left( {\frac{p}{2} + 1} \right)}^{1/p}},\sqrt 2 {{\left( {{{\Gamma \left( {\frac{{p + 1}}{2}} \right)} \mathord{\left/ {\vphantom {{\Gamma \left( {\frac{{p + 1}}{2}} \right)} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\Gamma \left( {\frac{p}{2} + 1} \right)\sqrt \pi } \right]}}} \right)}^{1/p}}} \right)$$ . Both expressions are equal for p = p 0 }~ 0.4756. For p ≥ 1 the best constants a p have been known for some time. The result implies for a norm 1 sequence x ∈ ? n , ‖x2 = 1, that $${\text{E}}\ln \left| {\frac{{{S_1} + {S_2}}}{{\sqrt 2 }}} \right| \leqslant {\text{E}}\ln \left| {\sum\limits_{j = 1}^n {{x_j}{S_j}} } \right|$$ , answering a question of A. Baernstein and R. Culverhouse.  相似文献   

7.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

8.
Let $ \mathcal{P}_n $ denote the set of algebraic polynomials of degree n with the real coefficients. Stein and Wpainger [1] proved that $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \leqslant C_n , $$ where C n depends only on n. Later A. Carbery, S. Wainger and J. Wright (according to a communication obtained from I. R. Parissis), and Parissis [3] obtained the following sharp order estimate $$ \mathop {\sup }\limits_{p( \cdot ) \in \mathcal{P}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{ip(x)} }} {x}dx} } \right| \sim \ln n. $$ . Now let $ \mathcal{T}_n $ denote the set of trigonometric polynomials $$ t(x) = \frac{{a_0 }} {2} + \sum\limits_{k = 1}^n {(a_k coskx + b_k sinkx)} $$ with real coefficients a k , b k . The main result of the paper is that $$ \mathop {\sup }\limits_{t( \cdot ) \in \mathcal{T}_n } \left| {p.v.\int_\mathbb{R} {\frac{{e^{it(x)} }} {x}dx} } \right| \leqslant C_n , $$ with an effective bound on C n . Besides, an analog of a lemma, due to I. M. Vinogradov, is established, concerning the estimate of the measure of the set, where a polynomial is small, via the coefficients of the polynomial.  相似文献   

9.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

10.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

11.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

12.
Let q, h, a, b be integers with q > 0. The classical and the homogeneous Dedekind sums are defined by $$s(h,q) = \sum\limits_{j = 1}^q {\left( {\left( {{j \over q}} \right)} \right)\left( {\left( {{{hj} \over q}} \right)} \right),{\rm{ }}s(a,b,q) = \sum\limits_{j = 1}^q {\left( {\left( {{{aj} \over q}} \right)} \right)\left( {\left( {{{bj} \over q}} \right)} \right),} } $$ respectively, where $((x)) = \left\{ \begin{gathered} x - [x] - \tfrac{1} {2},if x is not an integer; \hfill \\ 0,if x is an integer. \hfill \\ \end{gathered} \right. $ The Knopp identities for the classical and the homogeneous Dedekind sum were the following: $$\sum\limits_{d|n} {\sum\limits_{r = 1}^d {s\left( {{n \over d}a + rq,dq} \right) = \sigma (n)s(a,q),} } $$ $$\sum\limits_{d|n} {\sum\limits_{{r_1} = 1}^d {\sum\limits_{{r_2} = 1}^d s \left( {{n \over d}a + {r_1}q,{n \over d}b + {r_2}q,dq} \right) = n\sigma (n)s(a,b,q),} } $$ where σ(n) =Σ d|n d. In this paper generalized homogeneous Hardy sums and Cochrane-Hardy sums are defined, and their arithmetic properties are studied. Generalized Knopp identities for homogeneous Hardy sums and Cochrane-Hardy sums are given.  相似文献   

13.
The paper introduces singular integral operators of a new type defined in the space L p with the weight function on the complex plane. For these operators, norm estimates are derived. Namely, if V is a complex-valued function on the complex plane satisfying the condition |V(z) ? V(??)| ?? w|z ? ??| and F is an entire function, then we put $$P_F^* f(z) = \mathop {\sup }\limits_{\varepsilon > 0} \left| {\int\limits_{\left| {\zeta - z} \right| > \varepsilon } {F\left( {\frac{{V(\zeta ) - V(z)}} {{\zeta - z}}} \right)\frac{{f(\zeta )}} {{\left( {\zeta - z} \right)^2 }}d\sigma (\zeta )} } \right|.$$ It is shown that if the weight function ?? is a Muckenhoupt A p weight for 1 < p < ??, then $$\left\| {P_F^* f} \right\|_{p,\omega } \leqslant C(F,w,p)\left\| f \right\|_{p,\omega } .$$ .  相似文献   

14.
Let {ξi,-∞i∞} be a doubly infinite sequence of identically distributed-mixing random variables with zero means and finite variances,{ai,-∞i∞} be an absolutely summable sequence of real numbers and X k =∑i=-∞+∞ aiξi+k be a moving average process.Under some proper moment conditions,the precise asymptotics are established for  相似文献   

15.
Let f be a complex-valued multiplicative function, letp denote a prime and let π(x) be the number of primes not exceeding x. Further put $$m_p (f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{\pi (x)}}\sum\limits_{p \leqslant x} {f(p + 1)} {\text{, }}M(f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)}$$ and suppose that $$\mathop {\lim \sup }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {\left| {f\left( n \right)} \right|^2 } < \infty ,\sum\limits_{p \leqslant x} {\left| {f\left( n \right)} \right|^2 } \ll x\left( {\ln x} \right)^{ - \varrho } ,$$ with some \varrho > 0. For such functions we prove: If there is a Dirichlet character χ_d such that the mean-value M(f χ_d) exists and is different from zero,then the mean-value m_p(f) exists. If the mean-value M(f) exists, then the same is true for the mean-valuem_p(f) .  相似文献   

16.
Let Ω be an arbitrary open set in R n , and let σ(x) and g i (x), i = 1, 2, ..., n, be positive functions in Ω. We prove a embedding theorem of different metrics for the spaces W p r (Ω, σ, $ \vec g $ ), where rN, p ≥ 1, and $ \vec g $ (x) = (g 1(x), g 2(x), ..., g n (x)), with the norm $$ \left\| {u;W_p^r (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\left\| {u;L_{p,r}^r (\Omega ;\sigma ,\vec g)} \right\|^p + \left\| {u;L_{p,r}^0 (\Omega ;\sigma ,\vec g)} \right\|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ where $$ \left\| {u;L_{p,r}^m (\Omega ;\sigma ,\vec g)} \right\| = \left\{ {\sum\limits_{\left| k \right| = m} {\int\limits_\Omega {(\sigma (x)g_1^{k_1 - r} (x)g_2^{k_2 - r} (x) \cdots g_n^{k_n - r} (x)\left| {u^{(k)} (x)} \right|)^p dx} } } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} , $$ We use this theorem to prove the existence and uniqueness of a minimizing element U(x) ∈ W p r (Ω, σ, $ \vec g $ ) for the functional $$ \Phi (u) = \sum\limits_{\left| k \right| \leqslant r} {\frac{1} {{p_k }}\int\limits_\Omega {a_k (x)} \left| {u^{(k)} (x)} \right|^{p_k } } dx - \left\langle {F,u} \right\rangle , $$ where F is a given functional. We show that the function U(x) is a generalized solution of the corresponding nonlinear differential equation. For the case in which Ω is bounded, we study the differential properties of the generalized solution depending on the smoothness of the coefficients and the right-hand side of the equation.  相似文献   

17.
We show that there do not exist computable functions f 1(e, i), f 2(e, i), g 1(e, i), g 2(e, i) such that for all e, iω, (1) $ {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (2) $ {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)} \leqslant _{{\rm T}} {\left( {W_{e} - W_{i} } \right)}; $ (3) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)} \oplus {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}; $ (4) $ {\left( {W_{e} - W_{i} } \right)} \not\leqslant _{{\rm T}} {\left( {W_{{f_{1} {\left( {e,i} \right)}}} - W_{{f_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset};{\text{and}} $ (5) $ {\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\left( {W_{{g_{1} {\left( {e,i} \right)}}} - W_{{g_{2} {\left( {e,i} \right)}}} } \right)}{\text{unless}}{\left( {W_{e} - W_{i} } \right)} \leqslant _{{\rm T}} {\emptyset}. $ It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.  相似文献   

18.
In this paper, sufficient conditions are obtained for oscillation of a class of nonlinear fourth order mixed neutral differential equations of the form (E) $$\left( {\frac{1} {{a\left( t \right)}}\left( {\left( {y\left( t \right) + p\left( t \right)y\left( {t - \tau } \right)} \right)^{\prime \prime } } \right)^\alpha } \right)^{\prime \prime } = q\left( t \right)f\left( {y\left( {t - \sigma _1 } \right)} \right) + r\left( t \right)g\left( {y\left( {t + \sigma _2 } \right)} \right)$$ under the assumption $$\int\limits_0^\infty {\left( {a\left( t \right)} \right)^{\tfrac{1} {\alpha }} dt} = \infty .$$ where α is a ratio of odd positive integers. (E) is studied for various ranges of p(t).  相似文献   

19.
The hyperplanes in the affine geometry AG(d, q) yield an affineresolvable design with parameters $2 - (q^d ,q^{d - 1} ,\frac{{q^{d - 1} - 1}}{{q - 1}})$ . Jungnickel [3]proved an exponential lower bound on the number of non-isomorphic affine resolvable designs with these parametersfor d ≥ 3. The bound of Jungnickel was improved recently [5] by a factor of $q^{\frac{{d^2 + d - 6}}{2}} (q - 1)^{d - 2}$ for any d ≥ 4. In this paper, a construction of $2 - (q^d ,q^{d - 1} ,\frac{{q^{d - 1} - 1}}{{q - 1}})$ designs based on group divisible designs is given that yieldsat least $$\frac{{\left( {q^{d - 1} + q^{d - 2} + \cdots + 1} \right)!\left( {q - 1} \right)}}{{\left| {{\text{P}}\Gamma {\text{L(}}d,q{\text{)}}} \right|\left| {{\text{A}}\Gamma {\text{L(}}d,q{\text{)}}} \right|}}$$ non-isomorphic designs for any d ≥ 3. This new bound improves the bound of[5] by a factor of $$\frac{1}{{q^d }}\mathop \Pi \limits_{i = 1}^{(q^{d - 1} - q)/(q - 1)} (q^{d - 1} + i).$$ For any given q and d, It was previously known [2,11] that there are at least 8071non-isomorphic 2-(27,9,4) designs. We show that the number of non-isomorphic 2-(27,9,4) is atleast 245,100,000.  相似文献   

20.
In this paper, we establish two families of approximations for the gamma function: $$ \begin{array}{lll} {\varGamma}(x+1)&=\sqrt{2\pi x}{\left({\frac{x+a}{{\mathrm{e}}}}\right)}^x {\left({\frac{x+a}{x-a}}\right)}^{-\frac{x}{2}+\frac{1}{4}} {\left({\frac{x+b}{x-b}}\right)}^{\sum\limits_{k=0}^m\frac{{\beta}_k}{x^{2k}}+O{{\left(\frac{1}{x^{2m+2}}\right)}}},\\ {\varGamma}(x+1)&=\sqrt{2\pi x}\cdot(x+a)^{\frac{x}{2}+\frac{1}{4}}(x-a)^{\frac{x}{2}-\frac{1}{4}} {\left({\frac{x-1}{x+1}}\right)}^{\frac{x^2}{2}}\\ &\quad\times {\left({\frac{x-c}{x+c}}\right)}^{\sum\limits_{k=0}^m\frac{{\gamma}_k}{x^{2k}}+O{\left({\frac{1}{x^{2m+2}}}\right)}}, \end{array}$$ where the constants ${\beta }_k$ and ${\gamma }_k$ can be determined by recurrences, and $a$ , $b$ , $c$ are parameters. Numerical comparison shows that our results are more accurate than Stieltjes, Luschny and Nemes’ formulae, which, to our knowledge, are better than other approximations in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号