首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Oligosaccharides associated with proteins are known to give these molecules specific conformations and functions. Analysis of proteins would not be complete without studying the glycans. However, high-throughput techniques in proteomics will soon overwhelm the current capacity of methods if no automation is incorporated into glycomics. New capabilities of the StrOligo algorithm introduced for this purpose (Ethier et al., Rapid Commun. Mass Spectrom., 2002; 16: 1743) will be discussed here. Experimental tandem mass spectra were acquired to test the algorithm using a hybrid quadrupole-time-of-flight (QqTOF) instrument with a matrix-assisted laser desorption/ionization (MALDI) source. The samples were N-linked oligosaccharides from monoclonal antibody IgG, beta interferon and fetuin, detached by enzymatic deglycosylation and labeled at the reducing end. Improvements to the program were made in order to reduce the need for user intervention. StrOligo strips the spectra down to monoisotopic peaks only. The algorithm first builds a relationship tree, accounting for each observed loss of a monosaccharide moiety, and then analyzes the tree and proposes possible structures from combinations of adducts and fragment ion types. A score, which reflects agreement with experimental results, is then given to each proposed structure. The program then decides which combination is the best one and labels relevant peaks in the experimental mass spectrum using a modified nomenclature. The usefulness of the algorithm has been demonstrated by assigning structures to several glycans released from glycoproteins. The analysis was completed in less than 2 minutes for any glycan, which is a substantial improvement over manual interpretation.  相似文献   

2.
Hu Y  Mechref Y 《Electrophoresis》2012,33(12):1768-1777
The glycomic profiling of purified glycoproteins and biological specimen is routinely achieved through different analytical methods, but mainly through MS and LC-MS. The enhanced ionization efficiency and improved tandem MS interpretation of permethylated glycans have prompted the popularity of this approach. This study focuses on comparing the glycomic profiling of permethylated N-glycans derived from model glycoproteins and human blood serum using MALDI-MS as well as RP-LC-MALDI-MS and RP-LC-ESI-MS. In the case of model glycoproteins, the glycomic profiles acquired using the three methods were very comparable. However, this was not completely true in the case of glycans derived from blood serum. RP-LC-ESI-MS analysis of reduced and permethylated N-glycans derived from 250 nl of blood serum allowed the confident detection of 73 glycans (the structures of which were confirmed by mass accuracy and tandem MS), while 53 and 43 structures were identified in the case of RP-LC-MALDI-MS and MALDI-MS analyses of the same sample, respectively. RP-LC-ESI-MS analysis facilitates automated and sensitive tandem MS acquisitions. The glycan structures that were detected only in the RP-LC-ESI-MS analysis were glycans existing at low abundances. This is suggesting the higher detection sensitivity of RP-LC-ESI-MS analysis, originating from both reduced competitive ionization and saturation of detectors, facilitated by the chromatographic separation. The latter also permitted the separation of several structural isomers; however, isomeric separations pertaining to linkages were not detected.  相似文献   

3.
The activation of ions by extreme-energy photons (XUV) produced by a synchrotron radiation beamline is a powerful method for characterizing complex glycans using tandem mass spectrometry (MS). As previously described, this activation method leads to rich fragmentation spectra with many structurally valuable cross-ring cleavages while maintaining labile modifications on the glycan structures. However, until now, the tandem MS event was too long to be compatible with liquid chromatography elution times. In this work, the duty cycle of the activation and detection of fragments was shortened, and the background signal on the spectra was drastically reduced. Both improvements allowed, for the first time, the successful coupling of a UHPLC system to XUV-activated tandem MS. The approach was used to characterize a complex mixture of oligo-porphyrans, which are a class of highly sulfated oligosaccharides, in a fully automated way. Due to an enhanced dynamic range and an increased sensitivity, some hypothetical structures of low abundance have been unequivocally confirmed in this study and others have been revised. Some previously undescribed species of oligo-porphyrans that exhibit lateral branching have been fully resolved. This work contributes to the scarce knowledge of the structure of porphyrans in red algae and pushes the current capacities of XUV-activation tandem MS by demonstrating the possibility of a direct coupling with UHPLC. This study will considerably broaden the applicability and practicality of this method in many fields of analytical biology.  相似文献   

4.
Glycans are oligosaccharides associated with proteins, and are known to confer specific functions and conformations on glycoproteins. As protein tridimensional structures are related to function, the study of glycans and their impact on protein folding can provide important information to the field of proteomics. The subdiscipline of glycomics (or glycoproteomics) is rapidly growing in importance as glycans in proteins have shown to be involved in protein-protein or protein-(drug, virus, antibody) interactions. Glycomics studies most often aim at identifying glycosylation sites, and thus are performed on deglycosylated proteins resulting in loss of site-specific details concerning the glycosylation. In order to obtain such details by mass spectrometry (MS), either whole glycoproteins must be digested and analyzed as mixtures of peptides and glycopeptides, or glycans must be isolated from glycopeptide fractions and analyzed as pools. This article describes parallel experiments involving both approaches, designed to take advantage of the StrOligo algorithm functionalities with the aim of characterizing glycosylation microheterogeneity on a specific site. A hybrid quadrupole-quadrupole-time-of-flight (QqTOF) instrument equipped with a matrix-assisted laser desorption/ionization (MALDI) source was used. Glycosylation of alpha 5 beta 1 subunits of human integrin was studied to test the methodology. The sample was divided in two aliquots, and glycans from the first aliquot were released enzymatically, labelled with 2-aminobenzamide, and identified using tandem mass spectrometry (MS/MS) and the StrOligo program. The other aliquot was digested with trypsin and the resulting peptides separated by reversed-phase high-performance liquid chromatography (HPLC). A specific collected fraction was then analyzed by MS before and after glycan release. These spectra allowed, by comparison, detection of a glycopeptide (several glycoforms) and elucidation of peptide sequence. Compositions of glycans present were proposed, and identification of possible glycan structures was conducted using MS/MS and StrOligo.  相似文献   

5.
An ion source incorporating a fibre optic interface has been constructed for atmospheric pressure matrix-assisted laser desorption/ionisation quadrupole ion trap mass spectrometry. The configuration has been applied to the study of linear and complex oligosaccharides. Multi-stage tandem mass spectrometry (MSn, n = 2-4) experiments carried out in the ion trap enable extended fragmentation pathways to be investigated that yield structural information. Collisional activation of sodiated oligosaccharides, as demonstrated on the model compound maltoheptaose, produces primarily B and Y fragments resulting from cleavage of glycosidic bonds; fragments from cross-ring cleavages are also observed following further stages of tandem mass spectrometry, providing additional linkage information. The analyses of mixtures of complex oligosaccharides are demonstrated for N-linked glycans from chicken egg glycoproteins and a ribonuclease glycan mixture. Mass spectrometric and tandem mass spectrometric data for sugars with molecular weights up to 4000 Da is shown for mixtures of linear dextrans and N-linked glycans. The use of MSn (n = 3, 4) on these complex molecules enabled structural information to be elucidated that confirms data observed in the MS/MS spectra.  相似文献   

6.
Carbohydrates of all classes consist of glycoform mixtures built on common core units. Determination of compositions and structures of such mixtures relies heavily on tandem mass spectrometric data. Analysis of native glycans is often necessary for samples available in very low quantities and for sulfated glycan classes. Negative tandem mass spectrometry (MS) provides useful product ion profiles for neutral oligosaccharides and is preferred for acidic classes. In previous work from this laboratory, site-specific influences of sialylation on product ion profiles in the negative mode were elucidated. The present results show how the interplay of two other acidic groups, uronic acids and sulfates, determines product ion patterns for chondroitin sulfate oligosaccharides. Unsulfated chondroitin oligosaccharides dissociate to form C-type ions almost exclusively. Chondroitin sulfate oligosaccharides produce abundant B- and Y-type ions from glycosidic bond cleavage with C- and Z-types in low abundances. These observations are explained in terms of competing proton transfer reactions that occur during the collisional heating process. Mechanisms for product ion formation are proposed based on tandem mass spectra and the abundances of product ions as a function of collision energy.  相似文献   

7.
High mass-resolving power has been shown to be useful for studying the conformational dynamics of proteins by hydrogen/deuterium (H/D) exchange. A computer algorithm was developed that automatically identifies peptides and their extent of deuterium incorporation from H/D exchange mass spectra of enzymatic digests or fragment ions produced by collisionally induced dissociation (CID) or electron capture dissociation (ECD). The computer algorithm compares measured and calculated isotopic distributions and uses a fast calculation of isotopic distributions using the fast Fourier transform (FFT). The algorithm facilitates rapid and automated analysis of H/D exchange mass spectra suitable for high-throughput approaches to the study of peptide and protein structures. The algorithm also makes the identification independent on comparisons with undeuterated control samples. The applicability of the algorithm was demonstrated on simulated isotopic distributions as well as on experimental data, such as Fourier transform ion cyclotron resonance (FTICR) mass spectra of myoglobin peptic digests, and CID and ECD spectra of substance P.  相似文献   

8.
The therapeutic and immunological properties of biopharmaceuticals are governed by the glycoforms contained in them. Thus, bioinformatics tools capable of performing comprehensive characterization of glycans are significantly important to the biopharma industry. The primary structural elucidation of glycans using mass spectrometry is tricky and tedious in terms of spectral interpretation. In this study, the biosimilars of a therapeutic monoclonal antibody and an Fc-fusion protein with moderate and heavy glycosylation, respectively, were employed as representative biopharmaceuticals for released glycan analysis using liquid chromatography–tandem mass spectrometry instead of conventional mass spectrometry-based analysis. SimGlycan® is a software with proven ability to process tandem MS data for released glycans could identify eight additional glycoforms in Fc-fusion protein biosimilar, which were not detected during mass spectrometry analysis of released glycans or glyco-peptide mapping of the same molecule. Thus, liquid chromatography–tandem mass spectrometry analysis of released glycans not only complements conventional liquid chromatography–mass spectrometry-based glycan profiling but can also identify additional glycan structures that may otherwise be omitted during conventional liquid chromatography–tandem mass spectrometry based analysis of mAbs. The mass spectrometry data processing tools, such as PMI Byos™, SimGlycan®, etc., can display pivotal analytical capabilities in automated liquid chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry-based glycan analysis workflows, especially for high-throughput structural characterization of glycoforms in biopharmaceuticals.  相似文献   

9.
The fucosylation of glycans leads to diverse structures and is associated with many biological and disease processes. The exact determination of fucoside positions by tandem mass spectrometry (MS/MS) is complicated because rearrangements in the gas phase lead to erroneous structural assignments. Here, we demonstrate that the combined use of ion‐mobility MS and well‐defined synthetic glycan standards can prevent misinterpretation of MS/MS spectra and incorrect structural assignments of fucosylated glycans. We show that fucosyl residues do not migrate to hydroxyl groups but to acetamido moieties of N‐acetylneuraminic acid as well as N‐acetylglucosamine residues and nucleophilic sites of an anomeric tag, yielding specific isomeric fragment ions. This mechanistic insight enables the characterization of unique IMS arrival‐time distributions of the isomers which can be used to accurately determine fucosyl positions in glycans.  相似文献   

10.
N-linked oligosaccharides were released from hen ovalbumin by PNGase F and derivatized with phenylhydrazine. They were then examined by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Phenylhydrazones of N-glycans under MALDI-tandem mass spectrometry (MS/MS) and post-source decay (PSD) conditions produced relatively similar fragmentation patterns; however, more cross-ring cleavages and fragment ions corresponding to low abundance isomeric structures were detected by MS/MS and not in PSD. Most fragment ions corresponded to glycosidic cleavages with preferential loss of residues from the chitobiose core and the 3-antenna. Sialylated phenylhydrazone-N-glycans, characterized here for the first time in ovalbumin by tandem mass spectrometry, underwent losses of sialic acid residues followed the same fragmentation pathways observed with neutral derivatized glycans. The relative abundances of some fragment ions indicated the linkage position of sialic acid and provided information on the number of residues attached to the 6-antenna. Also, new structures of ovalbumin glycans were observed as part of this study and are reported here.  相似文献   

11.
This study demonstrates the application of 2,5-dihydrohybenzoic acid/aniline (DHB/An) and 2,5-dihydroxybenzoic acid/N,N-dimethylaniline (DHB/DMA) matrices for automated identification and quantitative analysis of native oligosaccharides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Both matrices are shown to be superior to pure DHB for native glycans in terms of signal intensities of analytes and homogeneity of sample distribution throughout the crystal layer. On-target formation of stable aniline Schiff base derivatives of glycans in DHB/An and the complete absence of such products in the mass spectra acquired in DHB/DMA matrix provide a platform for automated identification of reducing oligosaccharides in the MALDI mass spectra of complex samples. The study also shows how enhanced sensitivity is achieved with the use of these matrices and how the homogeneity of deposited sample material may be exploited for quick and accurate quantitative analysis of native glycan mixtures containing neutral and sialylated oligosaccharides in the low-nanogram to mid-picogram range.  相似文献   

12.
N-linked oligosaccharides obtained from total serum of mice with implanted head and neck tumors were analyzed and compared with those from control samples of healthy mice. Methods used include a combination of a derivatization procedure with phenylhydrazine (PHN) and analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Oligosaccharides were enzymatically released from total serum with PNGaseF and purified by high-performance liquid chromatography (HPLC) on a reversed-phase column. Mass spectra contained ion peaks of labeled oligosaccharides and MS/MS experiments provided useful data for the structural elucidation of these compounds. More than 40 N-glycans with compositions characteristic of high-mannose, hybrid, complex, neutral, and sialylated structures were identified in the serum of tumoral mice. Significant differences between samples were observed with respect to the abundances of high mannose and hybrid glycans. These oligosaccharides showed higher relative intensities in the spectra obtained from the cancer sera. Complex sialylated oligosaccharides had similar abundances in both types of sera, with the exception of fucosylated biantennary disialylated oligosaccharide, which was mostly detected with lower abundance in control samples. In the MALDI spectra, several minor species corresponded to uncommon carbohydrates. These structures have been investigated in detail by MS/MS. Among these novel glycoforms, a few sialylated oligosaccharides without a free reducing end were identified. Also, glycans with an extra 60 u were observed and likely feature the presence of a 2-acetamido-2-deoxyoctose residue attached on antennae of 3- or 6-linked mannose.  相似文献   

13.
Fixed-energy sequential tandem mass spectrometry (MS(n)) capabilities offered by quadrupole ion trap instruments have been explored in a systematic study of six isomers of Gal-Fucalpha-OBenzyl disaccharides. Under collision-induced dissociation (CID), sodiated molecular species generated in the positive-ion electrospray ionization mode yield simple and predictable mass spectra. Information on interglycosidic linkages and configurations can be deduced from the relative intensities of the selected diagnostic fragments arising from the glycosidic bond cleavages and corroborated by the fragments arising from cross-ring cleavages. As the CID patterns are not dependent on the number of prior tandem mass spectrometric steps, structures can be unambiguously assigned by matching the spectra with a library. The rules governing the fragmentation behavior of this class of oligosaccharides were tested for a representative isomeric disaccharide, Glcbeta1,3Fucalpha-OAllyl. The findings establish a basis for using MS(n) with a quadrupole ion trap instrument to elucidate structures of hexose-fucose subunits from more complicated oligosaccharides. Energy-resolved mass spectra were also acquired by CID tandem triple-quadrupole mass spectrometry. The breakdown behavior of the molecular ions revealed patterns which could differentiate stereoisomers of Gal-Fuc disaccharides over a range of collision energy from 20 to 50 eV.  相似文献   

14.
Deutero-reduced permethylated oligosaccharides were analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (MS/MS) using a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, fitted with a nanoflow ESI source. Under these ionization conditions such derivatives preferentially form sodiated molecular species in addition to protonated molecular species. Under collision-induced dissociation, protonated and sodiated molecular species yield simple and predictable fragment mass spectra. A systematic study was conducted on a series of deutero-reduced permethylated glycans to allow rationalization of the fragmentation processes. MS/MS spectra were characterized by fragments resulting from the cleavage of glycosidic bonds. These fragments originating from both the reducing and the non-reducing ends of the glycan yield information on sequence and branching. Furthermore, the substituent 3-linked to a HexNAc unit was readily eliminated. Special attention was devoted to a systematic study of fucosylated glycans. The fucosylated deutero-reduced permethylated glycans were submitted to an acidic hydrolysis, releasing specifically the fucosyl residues. The nascent free hydroxyl groups were subsequently CD3-labelled in order to determine the positions initially bearing the fucosyl residues along the oligosaccharide backbone. This methodology was finally applied to characterize a glycan pool enzymatically released from glycoproteins. The present data show that structural elucidation can be achieved at the 50 fmol level.  相似文献   

15.
Morelle W  Michalski JC 《Electrophoresis》2004,25(14):2144-2155
Oligosaccharides were derivatized by reductive amination using benzylamine and analyzed by nanoelectrospray ionization-quadrupole time of flight-tandem mass spectrometry (nanoESI-QTOF-MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+H]+ ions for all benzylamine-derivatized oligosaccharides. To obtain structural information from these derivatized oligosaccharides, MS/MS was applied. Protonated molecular ions underwent extensive fragmentation, even under low-energy collision-induced dissociation. MS/MS spectra of [M+H]+ ions are characterized by simple fragmentation patterns which result from cleavage of the glycosidic bonds and thus allow a straightforward interpretation. Fragmentation of the [M+H]+ ions gave predominantly B- and Y-type glycosidic fragments. A systematic study of various oligosaccharides showed that information on sugar sequence and branching could easily be obtained. Predictable and reproducible fragmentation patterns could be obtained in all cases. This derivatization procedure and mass spectrometric methodology were applied successfully to neutral and acidic glycans released from 10 microg of glycoproteins separated by gel electrophoresis. Moreover, the derivatives retain their sensitivity to exoglycosidases. Thus a series of sequential on-target exoglycosidase treatments combined with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) was found to be useful for the determination of structural features of the glycans released from proteins separated by gel electrophoresis such as the monosaccharide sequence, branching pattern, and anomeric configurations of the corresponding glycosidic linkages. Our strategy can be used successfully to assign the major glycans released from proteins separated by gel electrophoresis.  相似文献   

16.
New computer software, GlycoMiner, has been developed to automatically identify tandem (MS/MS) spectra obtained in liquid chromatography/mass spectrometry (LC/MS) runs which correspond to N-glycopeptides. The program complements conventional proteomics analysis, and can be used in a high-throughput environment. The program interprets the spectra and determines the structure of the corresponding glycopeptides. GlycoMiner runs under Windows, can process spectra obtained on various instruments, and can be downloaded from our website (w3.chemres.hu/ms/glycominer). The algorithm works similarly to a human expert; evaluates the low mass oxonium ions; deduces oligosaccharide losses from the protonated molecule; and identifies the mass of the peptide residue. The program has been tested on tryptic digests of two glycopeptides: AGP (which has five different N-glycosylation sites) and transferrin (with two N-glycosylation sites). Results have been evaluated both manually and by GlycoMiner. Out of 3132 MS/MS spectra 338 were found to correspond to glycopeptides; identification by GlycoMiner showed a 0.1% false positive and 0.1% false negative rate. From these it was possible to identify 196 glycan structures manually; GlycoMiner correctly identified all of these, with no false positives. The rest were low quality spectra, not suitable for structure assignment.  相似文献   

17.
Glycans exist as part of glycoproteins and glycolipids, which are involved in a variety of biological functions. The analysis of glycan structures, particularly that of structural isomers, is fundamentally important since isomeric glycans often show distinct functions; however, a method for their structural elucidation has not yet been established. Anomeric configurations, linkage positions and branching are the major factors in glycans and their alteration results in a large diversity of glycan structures. The analysis of vicinally substituted oligosaccharides is extremely difficult because the product ions formed in tandem mass spectrometry (MS/MS) often have the same m/z values. In our endeavor to address the issue, we analyzed a series of homo‐substituted trisaccharides consisting only of glucose by collision‐induced dissociation (CID), especially energy‐resolved mass spectrometry (ERMS). It was found that these structurally related glycans could be distinguished by taking advantage of differences in their activation energies in ERMS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
SeqMS, a software aid for de novo sequencing by tandem mass spectrometry (MS/MS), which was initially developed for the automated interpretation of high-energy collision-induced dissociation (CID) MS/MS spectra of peptides, has been applied to the interpretation of low-energy CID and post-source decay (PSD) spectra of peptides. Based on peptide backbone fragmented ions and their related ions, which are the dominant ions observed in the latter two techniques, the types of ions and their propensities to be observed have been optimized for efficient interpretation of the spectra. In a typical example, the modified SeqMS allowed the complete sequencing of a 31-amino acid synthetic peptide, except for the isobaric amino acids (Leu or Ile, and Lys or Gln), based on only the low-energy CID-MS/MS spectrum.  相似文献   

19.
Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure–function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.
Figure
?  相似文献   

20.
Exceptionally high mass resolving power and mass accuracy combined with tandem mass spectrometry (MSn) capability make Fourier transform ion cyclotron resonance mass spectrometry a powerful tool for structure verification and determination of biological macromolecules. By means of local internal calibration and electron mass correction, mass accuracy better than ±0.5 ppm was achieved for two oligosaccharide antibiotics, Saccharomicins A and B, consistent with the proposed elemental compositions based upon NMR data. High resolution and high mass accuracy MS/MS data were obtained for both oligosaccharides by use of infrared multiphoton dissociation (IRMPD) with a 40 W continuous-wave CO2 laser. The spectra were charge-state deconvolved by the “Z-score” algorithm to yield much simpler mass-only spectra. Sequences of 15 sugar residues could be confirmed from the charge state deconvolved accurate mass MS/MS spectra for Saccharomicins A and B, even without use of traditional prior permethylation. A fragment corresponding to an internal sugar loss rearrangement was observed by IRMPD and studied by collision activated dissociation MS4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号