首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of oxidation of propane-1,3-diol by alkaline hexacyanoferrate (III) catalyzed by ruthenium trichloride has been studied spectrophotometrically. A reaction mechanism involving the formation of an intermediate complex between the substrate and the catalyst is proposed. In the rate-determining step this complex is attacked by hexacyanoferate(III) forming a free radical which is further oxidized.  相似文献   

2.
Ruthenium(III) catalyzed oxidation of hexacyanoferrate(II) by periodate in alkaline medium is assumed to occurvia substrate-catalyst complex formation followed by the interaction of oxidant and complex in the rate-limiting stage and yield the products with regeneration of catalyst in the subsequent fast step. The reaction exhibits fractional order in hexacyanoferrate(II) and first-order unity each in oxidant and catalyst. The reaction constants involved in the mechanism are derived.  相似文献   

3.
《印度化学会志》2021,98(8):100104
The kinetics approach of oxidation of torsemide (TOR) by hexacyanoferrate (III) [HCF (III)] has been identified spectrophotometrically at 420 ​nm in the alkaline medium in the presence and absence of catalyst ruthenium (III) at 25 ​°C, by keeping ionic strength (1 ​× ​10−2 ​mol ​dm−3) constant. The reaction exhibits at the stoichiometry ratio 1:2 of TOR and HCF (III), for uncatalysed and catalysed reactions. In the absence and presence of the catalyst, the order of the reactions obtained for TOR and HCF (III) was unity. However, the rate of the reactions enhanced by the increase in the concentration of catalyst, as well as the rate increases with an increase in alkaline concentration. The activation parameters for the reaction at the slow step were identified, and the effect of temperature on the rate of the reaction was analysed. A suitable mechanism has been demonstrated by considering the obtained results. The derived rate laws are reliable with analysed experimental kinetics.  相似文献   

4.
The oxidation of dl-ornithine monohydrochloride (OMH) by diperiodatocuprate(III) (DPC) has been investigated both in the absence and presence of ruthenium(III) catalyst in aqueous alkaline medium at a constant ionic strength of 0.20 mol dm−3 spectrophotometrically. The stiochiometry was same in both the cases, i.e., [OMH]/[DPC] = 1:4. In both the catalyzed and uncatalyzed reactions, the order of the reaction with respect to [DPC] was unity while the order with respect to [OMH] was < 1 over the concentration range studied. The rate increased with an increase in [OH] and decreased with an increase in [IO4] in both cases. The order with respect to [Ru(III)] was unity. The reaction rates revealed that Ru(III) catalyzed reaction was about eight-fold faster than the uncatalyzed reaction. The oxidation products were identified by spectral analysis. Suitable mechanisms were proposed. The reaction constants involved in the different steps of the reaction mechanisms were calculated for both cases. The catalytic constant (KC) was also calculated for catalyzed reaction at different temperatures. The activation parameters with respect to slow step of the mechanism and also the thermodynamic quantities were determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive copper(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species.  相似文献   

5.
The kinetics of Ru(III) catalysed oxidation of l-leucine by diperiodatoargentate(III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.60 mol dm−3 was studied spectrophotometrically. The oxidation products are pentanoic acid and Ag(I). The stoichiometry is [l-leucine]:[DPA] = 1:2. The reaction is of first order in Ru(III) and [DPA] and has less than unit order in both [l-leu] and [alkali]. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)–l-leucine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test and spectral studies. The reaction constants involved in the different steps of the mechanism are calculated. The catalytic constant (Kc) was also calculated for the Ru(III) catalysed reaction at different temperatures. From the plots of log Kc versus 1/T, values of activation parameters with respect to the catalyst have been evaluated. The activation parameters with respect to the slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.  相似文献   

6.
7.
8.
The selective oxidation of thioethers to sulphoxides and of PPh3 to PPh3O can be effected by NMO in DMF as solvent in the presence of Ru(III) chloride as catalyst. Kinetic investigations indicate that the orders with respect to the catalyst and oxidant are one each. The order with respect to the substrate is variable being fractional order at low concentrations and zero at high concentrations. Spectrophotometric studies reveal the formation of a 1:1 complex between the substrate and the catalyst. A mechanism consistent with the above observations has been proposed and verified.  相似文献   

9.
在碱性介质中,用传统的分光光度法研究了Ag(III)配离子,即[Ag(HIO6)2]5-,氧化药物分子愈创甘油醚的动力学及其机理.用质谱鉴定了氧化产物;反应对Ag(III)和愈创甘油醚均为一级;在温度25.0-40.0℃范围内,通过分析[OH-]和[IO4-]tot对反应速率的影响,二级速率常数有以下表达式:k′=(ka kb[OH-])K1/{f([OH-])[IO4-]tot K1},在25.0℃及离子强度0.30mol·L-1时,对此反应有ka=(2.6±1.2)×10-2mol-1·L·s-1,kb=(2.8±0.1)mol-2·L2·s-1,及K1=(4.1±0.4)×10-4mol·L-1,求出了涉及ka,kb的活化参数,并据此推出反应机理为反应体系中的[Ag(HIO6)2]5-配离子在前期平衡后,反应活性中心与药物分子形成Ag(III)-过碘酸-愈创甘油醚分子三元配合物,配位甘油醚分子通过两个平行途径将两电子传递给中心原子Ag:一个途径无OH-离子参与,另一途径有OH-参与完成.  相似文献   

10.
The redox reaction between the 12-tungstocobaltate(III) ion and carbohydrazide is first order with respect to both the oxidant and the substrate. The observed pseudo first-order rate constant, kobs, is retarded by increasing the concentrations of H+ and alkali metal ion (Li+, Na+ and K+). There is a linear correlation between the kobs and the concentrations of carbohydrazide and H+ ion, but the plots of kobs against the concentrations of the alkali metal ions is non-linear. However, the same data is applicable to the Davies equation for the effect of the ionic strength on the kobs.  相似文献   

11.
The kinetics of chromium(III) catalyzed oxidation of 1,10-phenanthroline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically. The reaction between permanganate and 1,10-phenanthroline in alkaline medium exhibits 4:1 stoichiometry (KMnO4:1,10-phenanthroline). The reaction shows first order dependence on [permanganate] and [chromium(III)] and less than unit order dependence in 1,10-phenanthroline, zero order in alkali concentrations. The results suggest the formation of a complex between the 1,10-phenanthroline and the chromium(III) which reacts further with one mole of permanganate species in the rate-determining step, resulting in the formation of a free radical, which again reacts with three moles of permangante species in a subsequent fast step to yield the products. The reaction constants involved in the mechanism were evaluated. The activation parameters were computed with respect to the slow step of the mechanism.This revised version was published online in December 2005 with corrections to the Cover Date.  相似文献   

12.
The semiempirical zero-differential-overlap molecular orbital model which was shown in earlier papers in this series to give a good account of the charge transfer and -* spectra of Fe(II) complexes with conjugated ligands such as 2,2-bipyridyl and 1,10-phenanthroline is extended to complexes having openshell ground states, such as those of Fe(III), and to complexes of Ru(II) and Ru(III). The results are used to assign the observed charge transfer and intra-ligand absorption bands to specific orbital transitions. Observed and calculated intensities are in good agreement: reasons are advanced for the much lower intensity of the charge transfer bands in Ru(III) compared to Ru(II) complexes.  相似文献   

13.
在碱性介质中, 用传统的分光光度法研究了Ag(III)配离子, 即[Ag(HIO6)2]5-, 氧化药物分子愈创甘油醚的动力学及其机理. 用质谱鉴定了氧化产物;反应对Ag(III) 和愈创甘油醚均为一级;在温度25.0-40.0 ℃范围内, 通过分析[OH-]和[IO-4]tot对反应速率的影响, 二级速率常数有以下表达式:k′=(ka+kb[OH-])K1/{f([OH-])[IO-4]tot+K1}, 在25.0 ℃及离子强度0.30 mol·L-1时, 对此反应有ka=(2.6±1.2)×10-2 mol-1·L·s-1, kb=(2.8±0.1) mol-2·L2·s-1, 及K1=(4.1±0.4)×10-4 mol·L-1, 求出了涉及ka, kb的活化参数, 并据此推出反应机理为反应体系中的[Ag(HIO6)2]5-配离子在前期平衡后, 反应活性中心与药物分子形成Ag(III)-过碘酸-愈创甘油醚分子三元配合物, 配位甘油醚分子通过两个平行途径将两电子传递给中心原子Ag:一个途径无OH-离子参与, 另一途径有OH-参与完成.  相似文献   

14.
The reaction between hypophosphite and enneamolybdomanganate(IV) in perchloric acid was carried out under pseudo-first-order conditions keeping large excess of hypophosphite. The order in oxidant was found to be unity and that of hypophosphite was found to be less than unity. The reaction proceeds with prior formation of complex between the reactants followed by its rate determining decomposition. The accelerating effect of hydrogen ions on the reaction is due to the formation of active hexaprotonated oxidant species. The formation of the complex is supported by kinetic results and also by spectrophotometric study. The product of the reaction was found to be phosphitomolybdate, [H10(HP)Mo6O26]2−, which was confirmed by FTIR study and AAS analysis. The reaction involves direct two-electron transfer step without any free radical intervention. The effect of ionic strength, solvent polarity and the activation parameters were also in support of the mechanism proposed.  相似文献   

15.
Ornidazole is an antiparasitic drug having a wide spectrum of activity. Literature survey has revealed that no attention has been paid towards the oxidation of ornidazole with any oxidant from the kinetic and mechanistic view point. Also no one has examined the role of platinum group metal ions as catalysts in the oxidation of this drug. Such studies are of much use in understanding the mechanistic profile of ornidazole in redox reactions and provide an insight into the interaction of metal ions with the substrate in biological systems. For these reasons, the Ru(III)- and Os(VIII)-catalyzed kinetics of oxidation of ornidazole with chloramine-T have been studied in HCl and NaOH media, respectively at 313 K. The oxidation products and kinetic patterns were found to be different in acid and alkaline media. Under comparable experimental conditions, in Ru(III)-catalyzed oxidation the rate law is −d[CAT]/dt = k [CAT]o[ornidazole]ox[H+]y[Ru(III)]z and it takes the form −d[CAT]/dt = k [CAT]o[ornidazole]ox[OH]y[Os(VIII)][ArSO2NH2]z for Os(VIII)-catalyzed reaction, where x, y and z are less than unity. In acid medium, 1-chloro-3-(2-methyl-5-nitroimidazole-1-yl)propan-2-one and in alkaline medium, 1-hydroxy-3-(2-methyl-5-nitroimidazole-1-yl)propan-2-one were characterized as the oxidation products of ornidazole by GC–MS analysis. The reactions were studied at different temperatures and the overall activation parameters have been computed. The solvent isotope effect was studied using D2O. Under identical set of experimental conditions, the kinetics of Ru(III) catalyzed oxidation of ornidazole by CAT in acid medium have been compared with uncatalyzed reactions. The relative rates revealed that the catalyzed reactions are about 5-fold faster whereas in Os(VIII) catalyzed reactions, it is around 9 times. The catalytic constant (KC) has been calculated for both the catalysts at different temperatures and activation parameters with respect to each catalyst have been evaluated. The observed experimental results have been explained by plausible mechanisms. Related rate laws have been worked out.  相似文献   

16.
The kinetics of uncatalysed and Cu(II) catalysed oxidation of arginine monohydrochloride was investigated. Both reactions follow a singular order dependence each in oxidant and substrate. An inverse order dependence is reported with the alkali concentration. A plot of observed rate constant versus Cu(II) concentrations Cu(II)2.0×10–5 M is linear; from the intercept the rate constant for the uncatalysed pathway was calculated. However, at high copper ion concentrations i.e. Cu(II)>2.0×10–5 M a fixed value of rate constant was found for all catalyst concentrations. Added neutral salts show an insignificant effect on the reaction rate. Mechanisms were proposed for both cases and rate expressions were derived by applying steady state assumptions.
Die Kinetik der alkalischen Chloramin-T-Oxidation von Arginin-monohydrochlorid mit und ohneCu(II) als Katalysator
Zusammenfassung Die Oxidation erfolgt sowohl mit als auch ohne Cu(II)-Katalysator in erster Ordnung bezüglich des Oxidationsmittels und des Substrats; inverse Ordnung wird bezüglich der Alkalikonzentration beobachtet. Bis zu einer Cu(II)-Konzentration von2×10–5 M ist die Geschwindigkeitskonstante der Katalysatorkonzentration proportional; darüber wird eine konstantbleibende Geschwindigkeit beobachtet, die nun von der Cu(II)-Konzentration unabhängig ist. Neutralsalze haben keinen Effekt auf die Geschwindigkeitskonstante. Es wird für den katalysierten und unkatalysierten Reaktionsablauf ein Mechanismus vorgeschlagen und ein mathematischer Ansatz präsentiert.
  相似文献   

17.
The kinetics of the oxidation of 2-methyl cyclohexanone and cycloheptanone with Fe(CN)6 3− catalyzed by RhCl3 in alkaline medium was investigated at four temperatures. The rate follows direct proportionality with respect to lower concentrations of hexacyanoferrate(III) ion, but tends to become zero order at higher concentrations of the oxidant, while the reaction shows first-order kinetics with respect to hydroxide ion and cyclic ketone concentrations. The rate shows a peculiar nature with respect to RhCl3 concentrations in that it increases with increase in catalyst at low catalyst concentrations but after reaching a maximum, further increase in concentration retards the rate. An increase in the ionic strength of the medium increases the rate, while increase in the Fe(CN)6 4− concentration decreases the rate.  相似文献   

18.
The kinetics of oxidation of atenolol (ATN) by diperiodatocuprate(III) (DPC) in aqueous alkaline medium at a constant ionic strength of 0.10 mol dm−3 was studied spectrophotometrically. The reaction between DPC and ATN in alkaline medium exhibits 1:2 stoichiometry (ATN:DPC). The reaction is of first order in [DPC] and has less than unit order in both [ATN] and [alkali]. However, the order in [ATN] and [alkali] changes from first order to zero order as their concentration increase. Intervention of free radicals was observed in the reaction. Increase in periodate concentration decreases the rate. The oxidation reaction in alkaline medium has been shown to proceed via a monoperiodatocuprate(III)–ATN complex, which decomposes slowly in a rate-determining step followed by other fast steps to give the products. The main oxidative products were identified by spot test, IR, NMR and LC–ESI-MS studies. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to slow step of the mechanism are computed and discussed, and thermodynamic quantities are also determined.  相似文献   

19.
The kinetics of oxidation of cyclohexanol by 1-Chlorobenzotriazole (CBT) has been studied at 40°C in 50% aqueous acetic acid. The reaction is first order with respect to oxidant and first order with respect to substrate. The rate is found to increase with increase in acid concentration and percentage ofAcOH in the mixture. The kinetic parameters have been calculated. A suitable mechanism is proposed.
Kinetik und Mechanismus der Oxidation von Cyclohexanol mit 1-Chlorbenzotriazol (CBT) in saurem Medium
Zusammenfassung Die Kinetik der Oxidation von Cyclohexanol mitCBT wurde bei 40°C in 50% wäßriger Essigsäure untersucht. Die Reaktion war sowohl bezüglich Oxidationsmittel als auch Substrat von erster Ordnung. Die Reaktionsgeschwindigkeit wird mit zunehmender Säurekonzentration (AcOH) erhöht. Die kinetischen Parameter wurden bestimmt und ein passender Mechanismus wird vorgeschlagen.
  相似文献   

20.
The kinetics of Ir (III) chloride-catalyzed oxidation of D-glucose by iodate in aqueous alkaline medium was investigated at 45°C. The reaction follows first-order kinetics with respect to potassium iodate in its low concentration range but tends to zero order at its higher concentration. Zero-order kinetics with respect to [D-glucose] was observed. In the lower concentration range of Ir (III) chloride, the reaction follows first kinetics, while the order shifts from first to zero at its higher concentration range. The reaction follows first-order kinetics with respect to [OH?] at its low concentration but tends towards zero order at higher concentration. Variation in [Cl?] and ionic strength of the medium did not bring about any significant change in the rate of reaction. The first-order rate constant increased with a decrease in the dielectric constant of the medium. The values of rate constants observed at four different temperatures were utilized to calculate the activation parameters. Sodium salt of formic acid and arabinonic acid have been identified as the main oxidation products of the reaction. A plausible mechanism from the results of kinetic studies, reaction stoichiometry, and product analysis has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号