首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Substituted benzimidazolyl heterocycles and styrylbenzimidazoles have been synthesized by the reaction of substituted o-phenylenediamine with different heterocyclic carboxylic acids and cinnamic acid respectively in the presence of POCl3 as a solvent and catalyst. The proposed reaction has advantageous features of good yields, short reaction times, and operational simplicity. In addition, the scope and limitations were explored, and a plausible reaction mechanism was proposed. The synthesized molecules were characterized by infrared, 1H NMR, 13C NMR, and mass spectral data. Further, single crystals of 2-(1H-indol-2-yl)-1H-benzo[d]imidazole have been developed and structural parameters were collected from x-ray diffraction data.  相似文献   

2.
6-Triazolylpyridone derivatives were synthesized by coupling 4-(4-methoxyphenyl)-6-(1H-1,2,4-triazol-1-yl)-1-(3-chlorophenyl)pyridin-2(1H)-one with substituted benzenediazonium chlorides in the form of two isomers, which were separated by column chromatography and characterized by 1H and 13C NMR. Following the green approach, solvents were avoided as much as possible. The reaction monitoring was carried out by gas chromatography as well as thin-layer chromatography. The scope and limitation of the method are discussed. The structures of all the compounds have been assigned unambiguously on the basis of elemental analysis, infrared, and NMR spectral data and have been evaluated for antimicrobial and antitubercular activities.  相似文献   

3.
Novel 1-benzyl-3-(4-fluorophenyl)-1H-pyrazole-4-carbaldehydes 3a to 3e were synthesized via Vilsmeier-Haack reaction of the appropriate 1-benzyl-2-(1-(4-fluorophenyl)ethylidene)hydrazines, derived from 4-fluoroacetophenone 1 with substituted 2-benzylhydrazines 2a to 2e . The base catalyzed condensation of 1-benzyl-3-(4-fluorophenyl)-1H-pyrazole-4-carbaldehydes 3a to 3e with 1-(4-fluoro-2-hydroxyphenyl)ethanone 4 gave (E)-3-(1-benzyl-3-(4-fluorophenyl)-1H-pyrazol-4-yl)-1-(4-fluoro-2-hydroxyphenyl)prop-2-en-1-ones 5a to 5e . On cyclization with dimethyl sulfoxide (DMSO)/I2, compounds 5a to 5e gave 2-(1-benzyl-3-(4-fluorophenyl)-1H-pyrazol-4-yl)-7-fluoro-4H-chromen-4-ones 6a to 6e . Structures of all novel compounds were confirmed by infrared (IR), proton nuclear magnetic resonance (1H NMR), carbon nuclear magnetic resonance (13C NMR), and mass spectral data. All the synthesized compounds were screened for their antibacterial activities.  相似文献   

4.
A series of 2-(2-chloroquinolin-3-yl)-5-((aryl)benzylidene)-3-(4-oxo-2-phenylquinazolin-3(4H)-yl)thiazolidin-4-ones (V)1–12 have been synthesized. In order to establish optimization of different parameters of chemical transformation, that is the reaction pathway for each step and reaction conditions in the each step, in the present paper, different solvents and catalysts were used. The structures of the synthesized compounds were assigned on the basis of elemental analysis, IR, 1H NMR and 13C NMR spectral data. All the newly synthesized compounds were screened against various strains of bacteria and fungi.  相似文献   

5.
In this research, in order to synthesize a series of ethyl 2‐amino‐4‐benzoyl‐5‐oxo‐5,6‐dihydro‐4H‐pyrano[3,2‐c]quinoline‐3‐carboxylates, a green and an efficient method is proposed through one‐pot three‐component reaction of substituted arylglyoxals, ethyl cyanoacetate, and 4‐hydroxyquinolin‐2(1H)‐one in the presence of terapropylammonium bromide as a catalyst in good yields. All synthesized new substances were characterized by FTIR, 1H‐NMR, and 13C‐NMR spectral data and elemental analysis.  相似文献   

6.
1,4-Benzoxazine skeleton holds substantial promise for further exploration owing to its immense pharmacological potential. In this pursuit, a series of 20 novel benzoxazine-based arylidinyl succinimide derivatives (2342) were synthesized in moderate to good yields by the reaction of ethyl 2-(7-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)-3-oxo-2H-benzo[b][1,4]oxazin-4(3H)-yl)acetate (22) with various aromatic aldehydes under Wittig reaction conditions in the presence of triphenylphosphine and ethanol. All these synthesized compounds were fully characterized from their spectral data (1H, 13C, and 2D NMR, IR, UV, high-resolution mass spectroscopy (HRMS)) and further confirmed by X-ray crystallographic analysis of a representative compound (32). Antibacterial activity of obtained arylidinyl succinimide derivatives was evaluated against both Gram-positive and Gram-negative bacterial strains and were found to exhibit insignificant activity as compared to the reference.  相似文献   

7.
A series of novel 3,3′-(3,3′-(dihydroxy/hydroxyethane-1,2-diyl)bis(7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine-6,3-diyl))bis(2H-chromen-2-ones) were prepared by the condensation of thiocarbohydrazide with tartaric acid or malic acid followed by various 3-(2-bromoacetyl)-2H-chromen-2-ones in two steps with good yields. All the synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and mass) data. These synthesized bis(triazolothiadiazinyl coumarin) compounds were evaluated for broad spectrum of antiviral activity. Among all the tested compounds, compound 5f exhibited antiviral activity against H1N1 virus. The molecular docking studies of these compounds against H1N1 neuraminidase enzyme were performed. The binding affinity and binding values were compared with standard drugs.  相似文献   

8.
Three new vic-dioximes, [L1H2], N-(4-ethylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, [L2H2], N-(4-butylphenyl)amino-1-acetyl-1-cyclohexenylglyoxime, and [L3H2], N-(4-methoxyphenyl)amino-1-acetyl-1-cyclohexenylglyoxime were synthesized from 1-acetyl-1-cyclohexeneglyoxime and the corresponding substituted aromatic amines. Metal complexes of these ligands were also synthesized with Ni(II), Cu(II), and Co(II) salts. These new compounds (ligands and complexes) were characterized with FT–IR, magnetic susceptibility measurement, molar conductivity measurements, mass spectrometry measurements, thermal methods (e.g. thermal gravimetric analysis), 1H NMR (Nuclear Magnetic Resonance) and 13C NMR spectral data and elemental analyses.  相似文献   

9.
Several types of chalcones containing 2H‐chromen group were synthesized. Claisen–Schmidt condensation of 2H‐chromen‐3‐carbaldehydes (I) with methoxy substituted acetophenones afforded (E)‐3‐(2H‐chromen‐3‐yl)‐1‐(methoxyphenyl)prop‐2‐en‐1‐ones (chromenylchalcones, 1–7). Other types of chromenylchalcone, (E)‐1‐(6‐methoxy‐2H‐chromen‐3‐yl)‐3‐(methoxyphenyl)prop‐2‐en‐1‐ones (8–13) were also obtained between reaction of methoxy substituted benzaldehydes and 1‐(6‐methoxy‐2H‐chromen‐3‐yl)ethanone (II). Dichromenylchalcones (14–16) were also synthesized through the same reaction between aldehydes (I) and ketone (II). Their complete 1H‐NMR and 13C‐NMR assignments are reported here and more polysubstituted chromenylchalcones synthesized or isolated from the natural sources in the future can be identified on the basis of the NMR data reported here. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
A new series of nine derivatives of 4H‐pyrano[3,2‐c]chromene and 12 derivatives of N‐thiazolyl‐4H‐quinoline of 1H‐pyrazole has been synthesized by one pot base catalyzed cyclocondensation reaction of 1H‐pyrazole‐4‐carbaldehyde, malononitrile, and 4‐hydroxy coumarin or β‐enaminones, respectively. All the synthesized compounds were characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR spectral data and were further screened, against a panel of pathogenic strains of bacteria and fungi.  相似文献   

11.

Abstract  

A one-pot synthesis of new biologically active 4- and 6-(1-alkyl/aryl-1H-benzimidazol-2-yl)benzene-1,3-diols has been developed. The compounds were obtained by the reaction of aryl-modified sulfinylbis[(2,4-dihydroxyphenyl)methanethione] with N-substituted benzene-1,2-diamines. Elemental analysis, IR, 1H NMR, 13C NMR, and mass spectral data were used to elucidate their structures. The developed method offers short reaction times, easy and quick isolation of the products, and good yields. The antiproliferative properties of the synthesized compounds were investigated against a panel of human cancer cell lines. Some of the tested compounds showed significant cytotoxic activity.  相似文献   

12.
A mesogenic Schiff-base, N,N′-di-(4-decyloxysalicylidene)-1′,3′-diaminobenzene, H2ddsdbz (abbreviated as H2L), that exhibits a nematic mesophase was synthesized and its structure was studied by elemental analysis, mass spectrometry, NMR, and IR spectral techniques. The Schiff-base, H2L, upon condensation with hydrated lanthanide(III) nitrates yields LnIII complexes, [Ln2(LH2)3(NO3)4](NO3)2, where Ln?=?La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho. Analyses of the IR and NMR spectral data imply bidentate Schiff-base through two phenolate oxygen atoms in its zwitterionic form to LnIII, rendering the overall geometry of the complexes as a seven-coordinate polyhedron – possibly distorted mono-capped octahedron. Polarizing optical microscope and differential scanning calorimetry studies reveal that despite H2L being mesogenic, none of the LnIII complexes synthesized under this study exhibits mesomorphism.  相似文献   

13.

In the present study, a series of novel {6-[(1H-1,2,3-triazol-4-yl)methoxy]-3-methylbenzofuran-2-yl}(phenyl)methanones (7a–7o) have been synthesized using click chemistry approach. The structures of all newly synthesized compounds were characterized by FT-IR, 1H and 13C NMR, and MASS spectral data. Most of products demonstrated high antimicrobial activity.

  相似文献   

14.
4-(Chloroacetyl)diphenyl ether was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst in a Friedel-Crafts reaction. Then, its keto oxime and dioxime derivatives were prepared. 4-phenoxy-(N-4-chlorophenylamino)phenylglyoxime (H2L) was synthesized from 4-(phenoxy)chlorophenylglyoxime and 4-chloroaniline. Ni(II), Co(II) and Cu(II) complexes of H2L were obtained. The mononuclear Ni(II), Co(II) and Cu(II) complexes of H2L have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The structure of the ligand was identified by FT-IR, 1H NMR, 13C NMR, 13C NMR (APT) spectroscopy and elemental analysis data. The structures of the complexes were characterized on the basis of FT-IR, ICP-AES, UV-Vis, elemental analysis, magnetic susceptibility measurements, and cyclic voltammetry. The electrochemical measurements were obtained by using cyclic voltammetry in DMF solution at room temperature. The electrochemical behaviors of H2L and its complexes showed that the redox process of H2L has one irreversible oxidation wave, whereas the redox processes of the complexes have both oxidation and reduction waves with metal centered.  相似文献   

15.
A novel group of 6-iodoquinazolin-4(3H)-one derivatives was prepared starting from 6-iodo-2-ethoxy-4H-3,1-benzoxazin-4-one (3) via action of various nitrogen nucleophiles such as primary and secondary amines, hydrazine hydrate, and its derivatives. The 3-amino-2-hydrazinyl-6-iodoquinazolin-4(3H)-one (15) was used as a key starting material to prepare new heterocyclic compounds. The structures of all synthesized compounds were inferred from the infrared, mass spectral, and 1H NMR spectral data as well as elemental analysis. The fungicidal activities of the target compounds were preliminarily evaluated.  相似文献   

16.
One pot green synthesis of 1‐(1,2,4‐triazol‐4‐yl)spiro[azetidine‐2,3′‐(3H)‐indole]‐2′,4′(1′H)‐diones was carried out by the reaction of indole‐2,3‐diones,4‐amino‐4H‐1,2,4‐triazole and acetyl chloride/chloroacetyl chloride in ionic liquid [bmim]PF6 with/without using a catalyst. It was also prepared by conventional method via Schiff's bases, 3‐[4H‐1,2,4‐triazol‐4‐yl]imino‐indol‐2‐one. Further, the corresponding phenoxy derivatives were obtained by the reaction of chloro group attached to azetidine ring with phenols. The synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR, and FAB mass) data. Evaluation for insecticidal activity against Periplaneta americana exhibited promising results.  相似文献   

17.
Pyrazolo pyrimido pyrimidine ( 4a–k ) was prepared by the reaction of compound 3‐cyano‐4‐imino‐2‐(methylthio)4H‐pyrido[1,2‐a]pyrimidine ( 3 ) with hydrazine hydrate, phenyl hydrazine, 2‐hydrazino benzothiazole, and 6‐substituted hydrazine benzothiazole in N,N‐dimethylformamide and anhydrous potassium carbonate. These synthesized compounds were characterized by elemental analysis IR, 1H NMR, and mass spectral data.  相似文献   

18.
A series of new N- and S-substituted 1,3,4-oxadiazole derivatives were synthesized. 5-Pyridin-3-yl-3-[2-(5-thioxo-4,5-dihydro-l,3,4-thiadiazol-2-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione and 5-[(5-(pyridin-3-yl)-1,3,4-oxadiazol-2-ylthio)methyl]-N-phenyl-1,3,4-thiadiazol-2-amine were formed by cyclization of 3-(5-pyridin-3-yl-2-thioxo-1,3,4-oxadiazol-3(2H)-ylpropanimidohydrazide and 2-[(5-pyridin-3-yl-1,3,4-oxadiazol-2-yl)thio]thiosemicarbazide with CS2 and H2SO4. On the other hand, a number of new bicyclic 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives were synthesized. 6-Pyridin-3-ylbis[1,2,4]‐triazolo[3,4-b:4′,3′-d][1,3,4]thiadiazole-3(2H)-thione was synthesized by reaction of 6-(hydrazino)-3-pyridine-3-yl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole with CS2/KOH/EtOH. The structures of the newly synthesized compounds were elucidated by the spectral and analytical data IR, Mass, and 1H NMR spectra. Correspondence: Adel A.-H. Abdel-Rahman, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt; Wael A. El-Sayed, National Research Centre, Department of Photochemistry, Cairo, Egypt.  相似文献   

19.
Several derivatives of the new pyrimido[4′,5′:3,4]pyrazolo[1,2‐b]phthalazine‐4,7,12‐trione ring system have been prepared by the reaction of 3‐amino‐1‐aryl‐5,10‐dioxo‐5,10‐dihydro‐1H‐pyrazolo[1,2‐b]phthalazine‐2‐carbonitriles with aliphatic carboxylic acids in the presence of phosphoryl chloride (POCl3). The synthesized compounds were characterized on the basis of IR, 1H NMR, and 13C NMR spectral and microanalytical data.  相似文献   

20.
A new series of 2,3‐disubstituted quinazolin‐4(3H)‐one derivatives was synthesized by nucleophilic attack at C(2) of the corresponding key starting material 2‐propyl‐4H‐3,1‐benzoxazin‐4‐one (Scheme 2). The reaction proceeded via amidinium salt formation (Scheme 3) rather than via an N‐acylanthranilimide. The structure of the prepared compounds were elucidated by physical and spectral data like FT‐IR, 1H‐NMR, and mass spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号